Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
Proceedings of the National Academy of Sciences National Academy of Sciences 122:45 (2025) e2513365122
Abstract:
The generation of dense electron-positron pair beams in the laboratory can enable direct tests of theoretical models of γ-ray bursts and active galactic nuclei. We have successfully achieved this using ultrarelativistic protons accelerated by the Super Proton Synchrotron at (CERN). In the first application of this experimental platform, the stability of the pair beam is studied as it propagates through a meter-length plasma, analogous to TeV γ-ray-induced pair cascades in the intergalactic medium. It has been argued that pair beam instabilities disrupt the cascade, thus accounting for the observed lack of reprocessed GeV emission from TeV blazars. If true, this would remove the need for a moderate strength intergalactic magnetic field to explain the observations. We find that the pair beam instability is suppressed if the beam is not perfectly collimated or monochromatic, hence the lower limit to the intergalactic magnetic field inferred from γ-ray observations of blazars is robust.Measurement of the mean number of muons with energies above 500 GeV in air showers detected with the IceCube Neutrino Observatory
Physical Review D American Physical Society (APS) 112:8 (2025) 082004
Abstract:
We present a measurement of the mean number of muons with energies larger than 500 GeV in near-vertical extensive air showers initiated by cosmic rays with primary energies between 2.5 and 100 PeV. The measurement is based on events detected in coincidence between the surface and in-ice detectors of the IceCube Neutrino Observatory. Air showers are recorded on the surface by IceTop, while a bundle of high-energy muons (TeV muons) from the shower can subsequently produce a tracklike event in the IceCube in-ice array. Results are obtained assuming the hadronic interaction models Sibyll 2.1, QGSJet-II.04, and EPOS-LHC. The measured number of TeV muons is found to be in agreement with predictions from air-shower simulations. The results have also been compared to a measurement of low-energy muons by IceTop, indicating an inconsistency between the predictions for low- and high-energy muons in simulations based on the EPOS-LHC model.HOPPET v2.0.0 release note
(2025)
Supercooled confinement
Journal of High Energy Physics Springer Science and Business Media LLC 2025:10 (2025) 66
Abstract:
<jats:title>A<jats:sc>bstract</jats:sc> </jats:title> <jats:p>We study general properties of confinement phase transitions in the early universe. An observable gravitational wave signal from such transitions requires significant supercooling. However, in almost all understood examples of confining gauge theories the degree of supercooling is too small to give interesting gravitational wave signals. We review and highlight the evidence why supercooling is not generic in confining gauge theories. The exceptions are Randall-Sundrum models which define a strongly coupled gauge theory holographically by a 5D gravitational theory. We construct a simple illustrative model of a 4D gauge theory inspired by features of the Randall-Sundrum model. It is a large-<jats:italic>N</jats:italic> gauge theory in the conformal window coupled to a weakly coupled scalar field which undergoes a supercooled phase transition that breaks the conformal symmetry and triggers confinement. We show that there are interesting features in the gravitational wave spectra that can carry the imprint of the confining gauge theory.</jats:p>QSHS: an axion dark matter resonant search apparatus
New Journal of Physics IOP Publishing 27:10 (2025) 105002