SO(N) gauge theories in 2+1 dimensions: Glueball spectra and confinement
Journal of High-Energy Physics Springer 2017 (2017) 22
Abstract:
We calculate the spectrum of light glueballs and the string tension in a number of SO(N) lattice gauge theories in 2+1 dimensions, with N in the range 3 ≤ N ≤ 16. After extrapolating to the continuum limit and then to N = ∞ we compare to the spectrum and string tension of the SU(N → ∞) gauge theory and find that the most reliably and precisely calculated physical quantities are consistent in that limit. We also compare the glueball spectra of those pairs of SO(N) and SU(N') theories that possess the same Lie algebra, i.e. SO(3) and SU(2), SO(4) and SU(2)XSU(2), SO(6) and SU(4), and find that for the very lightest glueballs the spectra are consistent within each such pair, as are the string tensions and the couplings. Where there are apparent discrepancies they are typically for heavier glueballs, where the systematic errors are much harder to control. We calculate the SO(N) string tensions with a particular focus on the confining properties of SO(2N + 1) theories which, unlike SO(2N) theories, possess a trivial centre. We find that for both the light glueballs and for the string tension SO(2N) and SO(2N + 1) gauge theories appear to form a single smooth sequence.Measurement of the νμ energy spectrum with IceCube-79: IceCube Collaboration
European Physical Journal C 77:10 (2017)
Abstract:
IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The νμ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an Eν-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9σ in four adjacent bins for neutrino energies Eν≥177.8TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.Astrophysical neutrinos: IceCube highlights
Nuclear and Particle Physics Proceedings Elsevier 291 (2017) 167-174
SO(N) gauge theories in 2 + 1 dimensions: glueball spectra and confinement
Journal of High Energy Physics Springer Nature 2017:10 (2017) 22
Constraints on axion-like particles from X-ray observations of NGC1275
Astrophysical Journal IOP Publishing 847:2 (2017) 101