Signal-background interference effects for $gg \to H \to W^+ W^-$ beyond leading order

(2013)

Authors:

Marco Bonvini, Fabrizio Caola, Stefano Forte, Kirill Melnikov, Giovanni Ridolfi

Vacuum Varieties, Holomorphic Bundles and Complex Structure Stabilization in Heterotic Theories

(2013)

Authors:

Lara B Anderson, James Gray, Andre Lukas, Burt Ovrut

The Cosmophenomenology of Axionic Dark Radiation

ArXiv 1304.1804 (2013)

Authors:

Joseph P Conlon, MC David Marsh

Abstract:

Relativistic axions are good candidates for the dark radiation for which there are mounting observational hints. The primordial decays of heavy fields produce axions which are ultra-energetic compared to thermalised matter and inelastic axion-matter scattering can occur with $E_{CoM} \gg T_{\gamma}$, thus accessing many interesting processes which are otherwise kinematically forbidden in standard cosmology. Axion-photon scattering into quarks and leptons during BBN affects the light element abundances, and bounds on overproduction of $^4$He constrain a combination of the axion decay constant and the reheating temperature. For supersymmetric models, axion scattering into visible sector superpartners can give direct non-thermal production of dark matter at $T_{\gamma} \ll T_{freezeout}$. Most axions --- or any other dark radiation candidate from modulus decay --- still linger today as a Cosmic Axion Background with $E_{axion} \sim \mathcal{O}(100) eV$, and a flux of $\sim 10^6 cm^{-2} s^{-1}$.

The Cosmophenomenology of Axionic Dark Radiation

(2013)

Authors:

Joseph P Conlon, MC David Marsh

Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

ArXiv 1304.163 (2013)

Abstract:

The observation of ultrahigh energy (UHE) neutrinos has become a priority in experimental astroparticle physics. UHE neutrinos can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going neutrinos) or in the Earth crust (Earth-skimming neutrinos), producing air showers that can be observed with arrays of detectors at the ground. With the Surface Detector Array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e. after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE neutrinos in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE neutrinos in the EeV range and above.