An entanglement monotone from the contextual fraction
New Journal of Physics IOP Publishing 27:5 (2025) 054506
Abstract:
The contextual fraction introduced by Abramsky and Brandenburger defines a quantitative measure of contextuality associated with empirical models, i.e. tables of probabilities of measurement outcomes in experimental scenarios. In this paper we define an entanglement monotone relying on the contextual fraction. We first show that any separable state is necessarily non-contextual with respect to any Bell scenario. Then, for 2-qubit states, we associate a state-dependent Bell scenario and show that the corresponding contextual fraction is an entanglement monotone, suggesting contextuality may be regarded as a refinement of entanglement. We call this monotone the quarter-turn contextual fraction, and use it to set an upper bound of approximately 0.601 for the minimum entanglement entropy needed to guarantee contextuality with respect to some Bell scenario.Search for dark matter from the center of the Earth with 10 years of IceCube data
European Physical Journal C Springer Nature 85:5 (2025) 490
Galactic transient sources with the Cherenkov Telescope Array Observatory
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:1 (2025) 205-238
Abstract:
A wide variety of Galactic sources show transient emission at soft and hard X-ray energies: low- and high-mass X-ray binaries containing compact objects, isolated neutron stars exhibiting extreme variability as magnetars as well as pulsar-wind nebulae. Although most of them can show emission up to MeV and/or GeV energies, many have not yet been detected in the TeV domain by Imaging Atmospheric Cherenkov Telescopes. In this paper, we explore the feasibility of detecting new Galactic transients with the Cherenkov Telescope Array Observatory (CTAO) and the prospects for studying them with Target of Opportunity observations. We show that CTAO will likely detect new sources in the TeV regime, such as the massive microquasars in the Cygnus region, low-mass X-ray binaries with low-viewing angle, flaring emission from the Crab pulsar-wind nebula or other novae explosions, among others. Since some of these sources could also exhibit emission at larger time-scales, we additionally test their detectability at longer exposures. We finally discuss the multiwavelength synergies with other instruments and large astronomical facilities.Bracketing the soliton-halo relation of ultralight dark matter
(2025)