New Calabi–Yau manifolds from genetic algorithms
Physics Letters B Elsevier 850 (2024) 138504
Abstract:
Calabi–Yau manifolds can be obtained as hypersurfaces in toric varieties built from reflexive polytopes. We generate reflexive polytopes in various dimensions using a genetic algorithm. As a proof of principle, we demonstrate that our algorithm reproduces the full set of reflexive polytopes in two and three dimensions, and in four dimensions with a small number of vertices and points. Motivated by this result, we construct five-dimensional reflexive polytopes with the lowest number of vertices and points. By calculating the normal form of the polytopes, we establish that many of these are not in existing datasets and therefore give rise to new Calabi–Yau four-folds. In some instances, the Hodge numbers we compute are new as well.Search for Continuous and Transient Neutrino Emission Associated with IceCube’s Highest-energy Tracks: An 11 yr Analysis
The Astrophysical Journal American Astronomical Society 964:1 (2024) 40
Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube
ArXiv 2402.18026 (2024)
Early vs late string networks from a minimal QCD axion
Journal of High Energy Physics Springer 2024:2 (2024) 223
Abstract:
We propose a new regime of minimal QCD axion dark matter that lies between the pre- and post-inflationary scenarios, such that the Peccei-Quinn (PQ) symmetry is restored only on sufficiently large spatial scales. This leads to a novel cosmological evolution, in which strings and domain walls re-enter the horizon and annihilate later than in the ordinary post-inflationary regime, possibly even after the QCD crossover. Such dynamics can occur if the PQ symmetry is restored by inflationary fluctuations, i.e. the Hubble parameter during inflation HI is larger than the PQ breaking scale fa, but it is not thermally restored afterwards. Solving the Fokker-Planck equation, we estimate the number of inflationary e-folds required for the PQ symmetry to be, on average, restored. Moreover, we show that, in the large parts of parameter space where the radial mode is displaced from the minimum by de Sitter fluctuations, a string network forms due to the radial mode oscillating over the top of its potential after inflation. In both cases we identify order one ranges in HI/fa and in the quartic coupling λ of the PQ potential that lead to the late-string dynamics. In this regime the cosmological dark matter abundance can be reproduced for axion decay constants as low as the astrophysical constraint 𝒪(108) GeV, corresponding to axion masses up to 10−2 eV, and with miniclusters with masses as large as 𝒪(10)M⊙.Search for Extremely High Energy Neutrinos with IceCube
Sissa Medialab Srl (2024) 1149