A matrix formulation for small-x singlet evolution

Journal of High Energy Physics Springer Nature 2007:08 (2007) 046

Authors:

Marcello Ciafaloni, Dimitri Colferai, Gavin P Salam, Anna M Staśto

Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications

ArXiv 0708.1873 (2007)

Authors:

Michele Cicoli, Joseph P Conlon, Fernando Quevedo

Abstract:

We study the behaviour of the string loop corrections to the N=1 4D supergravity Kaehler potential that occur in flux compactifications of IIB string theory on general Calabi-Yau three-folds. We give a low energy interpretation for the conjecture of Berg, Haack and Pajer for the form of the loop corrections to the Kaehler potential. We check the consistency of this interpretation in several examples. We show that for arbitrary Calabi-Yaus, the leading contribution of these corrections to the scalar potential is always vanishing, giving an "extended no-scale structure". This result holds as long as the corrections are homogeneous functions of degree -2 in the 2-cycle volumes. We use the Coleman-Weinberg potential to motivate this cancellation from the viewpoint of low-energy field theory. Finally we give a simple formula for the 1-loop correction to the scalar potential in terms of the tree-level Kaehler metric and the correction to the Kaehler potential. We illustrate our ideas with several examples. A companion paper will use these results in the study of Kaehler moduli stabilisation.

Systematics of String Loop Corrections in Type IIB Calabi-Yau Flux Compactifications

(2007)

Authors:

Michele Cicoli, Joseph P Conlon, Fernando Quevedo

Search for neutrino-induced cascades from gamma-ray bursts with AMANDA

Astrophysical Journal 664:1 I (2007) 397-410

Authors:

A Achterberg, M Ackermann, J Adams, J Ahrens, K Andeen, J Auffenbero, JN Bahcall, X Bai, B Baret, SW Barwick, R Bay, K Beattie, T Becka, JK Becker, KH Becker, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, A Bouchta, J Braun, C Burgess, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, DF Cowen, MV D'Agostino, A Davour, CT Day, C De Clercq, L Demirörs, F Descamps, P Desiati, T DeYung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, PA Evenson, O Fadiran, AR Fazely, K Filimonov, MM Foerster, BD Fox, A Franckowiak, TK Gaisser, J Gallagher, R Ganugapati, H Geenen, L Gerhardt, A Goldschmidt, JA Goodman, R Gozzini, T Griesel, S Grullon, A Groß, RM Gunasingha, M Gurtner, A Hallgren, F Halzen, K Han, K Hanson, D Hardtke, R Hardtke, JE Hart, Y Hasegawa, T Hauschildt, D Hays, J Heise, K Helbing, M Hellwig, P Herquet, GC Hill, J Hodges, KD Hoffman, B Hommez, K Hoshina, D Hubert, B Hughey, PO Hulth, K Hultqvist, JP Hülß, S Hundertmark, M Inaba, A Ishihara, J Jacobsen, GS Japaridze

Abstract:

Using the neutrino telescope AMANDA-II, we have conducted two analyses searching for neutrino-induced cascades from gamma-ray bursts. No evidence of astrophysical neutrinos was found, and limits are presented for several models. We also present neutrino effective areas which allow the calculation of limits for any neutrino production model. The first analysis looked for a statistical excess of events within a sliding window of 1 or 100 s (for short and long burst classes, respectively) during the years 2001-2003. The resulting upper limit on the diffuse flux normalization times .E2 for the Waxman-Bahcall model at 1 PeVis 1.6 × 10-6 GeV cm-2 s-1 sr-1 (a factor of 120 above the theoretical prediction). For this search 90% of the neutrinos would fall in the energy range 50 TeV to 7 PeV. The second analysis looked for neutrino-induced cascades in coincidence with 73 bursts detected by BATSE in the year 2000. The resulting upper limit on the diffuse flux normalization times E2, also at 1 PeV, is 1.5 × 10-6 GeV cm-2 s-1 sr-1 (a factor of 110 above the theoretical prediction) for the same energy range. The neutrino-induced cascade channel is complementary to the up-going muon channel, We comment on its advantages for searches of neutrinos from GRBs and its future use with IceCube. © 2007. The American Astronomical Society. All rights reserved.

Detection of atmospheric muon neutrinos with the IceCube 9-string detector

Physical Review D - Particles, Fields, Gravitation and Cosmology 76:2 (2007)

Authors:

A Achterberg, M Ackermann, J Adams, J Ahrens, K Andeen, J Auffenberg, X Bai, B Baret, SW Barwick, R Bay, K Beattie, T Becka, JK Becker, KH Becker, M Beimforde, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, A Bouchta, J Braun, C Burgess, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, DF Cowen, MV D'Agostino, A Davour, CT Day, C De Clercq, L Demirörs, F Descamps, P Desiati, T Deyoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, PA Evenson, O Fadiran, AR Fazely, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, H Geenen, L Gerhardt, A Goldschmidt, JA Goodman, R Gozzini, T Griesel, S Grullon, A Groß, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, D Hardtke, R Hardtke, JE Hart, Y Hasegawa, T Hauschildt, D Hays, J Heise, K Helbing, M Hellwig, P Herquet, GC Hill, J Hodges, KD Hoffman, B Hommez, K Hoshina, D Hubert, B Hughey, JP Hülß, PO Hulth, K Hultqvist, S Hundertmark, M Inaba

Abstract:

The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of live time, 234 neutrino candidates were selected with an expectation of 211±76.1(syst) ±14.5(stat) events from atmospheric neutrinos. © 2007 The American Physical Society.