A practical seedless infrared-safe cone jet algorithm

Journal of High Energy Physics Springer Nature 2007:05 (2007) 086

Authors:

Gavin P Salam, Grégory Soyez

Astrophysical and Cosmological Implications of Large Volume String Compactifications

ArXiv 0705.3460 (2007)

Authors:

Joseph P Conlon, Fernando Quevedo

Abstract:

We study the spectrum, couplings and cosmological and astrophysical implications of the moduli fields for the class of Calabi-Yau IIB string compactifications for which moduli stabilisation leads to an exponentially large volume V ~ 10^{15} l_s^6 and an intermediate string scale m_s ~ 10^{11}GeV, with TeV-scale observable supersymmetry breaking. All K\"ahler moduli except for the overall volume are heavier than the susy breaking scale, with m ~ ln(M_P/m_{3/2}) m_{3/2} ~ (\ln(M_P/m_{3/2}))^2 m_{susy} ~ 500 TeV and, contrary to standard expectations, have matter couplings suppressed only by the string scale rather than the Planck scale. These decay to matter early in the history of the universe, with a reheat temperature T ~ 10^7 GeV, and are free from the cosmological moduli problem (CMP). The heavy moduli have a branching ratio to gravitino pairs of 10^{-30} and do not suffer from the gravitino overproduction problem. The overall volume modulus is a distinctive feature of these models and is an M_{planck}-coupled scalar of mass m ~ 1 MeV and subject to the CMP. A period of thermal inflation can help relax this problem. This field has a lifetime ~ 10^{24}s and can contribute to dark matter. It may be detected through its decays to 2\gamma or e^+e^-. If accessible the e^+e^- decay mode dominates, with Br(\chi \to 2 \gamma) suppressed by a factor (ln(M_P/m_{3/2}))^2. We consider the potential for detection of this field through different astrophysical sources and find that the observed gamma-ray background constrains \Omega_{\chi} <~ 10^{-4}. The decays of this field may generate the 511 keV emission line from the galactic centre observed by INTEGRAL/SPI.

Astrophysical and Cosmological Implications of Large Volume String Compactifications

(2007)

Authors:

Joseph P Conlon, Fernando Quevedo

A Practical Seedless Infrared Safe Cone Algorithm

(2007)

Five years of searches for point sources of astrophysical neutrinos with the AMANDA-II neutrino telescope

Physical Review D - Particles, Fields, Gravitation and Cosmology 75:10 (2007)

Authors:

A Achterberg, M Ackermann, J Adams, J Ahrens, K Andeen, DW Atlee, JN Bahcall, X Bai, B Baret, SW Barwick, R Bay, K Beattie, T Becka, JK Becker, KH Becker, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, A Bouchta, J Braun, C Burgess, T Burgess, T Castermans, D Chirkin, B Christy, J Clem, DF Cowen, MV D'Agostino, A Davour, CT Day, C De Clercq, L Demirörs, F Descamps, P Desiati, T DeYoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, PA Evenson, O Fadiran, AR Fazely, T Feser, K Filimonov, BD Fox, TK Gaisser, J Gallagher, R Ganugapati, H Geenen, L Gerhardt, A Goldschmidt, JA Goodman, R Gozzini, S Grullon, A Groß, RM Gunasingha, M Gurtner, A Hallgren, F Halzen, K Han, K Hanson, D Hardtke, R Hardtke, T Harenberg, JE Hart, T Hauschildt, D Hays, J Heise, K Helbing, M Hellwig, P Herquet, GC Hill, J Hodges, KD Hoffman, B Hommez, K Hoshina, D Hubert, B Hughey, PO Hulth, K Hultqvist, S Hundertmark, JP Hülß, A Ishihara, J Jacobsen, GS Japaridze, H Johansson, A Jones, JM Joseph

Abstract:

We report the results of a five-year survey of the northern sky to search for point sources of high energy neutrinos. The search was performed on the data collected with the AMANDA-II neutrino telescope in the years 2000 to 2004, with a live time of 1001 days. The sample of selected events consists of 4282 upward going muon tracks with high reconstruction quality and an energy larger than about 100 GeV. We found no indication of point sources of neutrinos and set 90% confidence level flux upper limits for an all-sky search and also for a catalog of 32 selected sources. For the all-sky search, our average (over declination and right ascension) experimentally observed upper limit Φ0=(E1TeV) γ•dΦdE to a point source flux of muon and tau neutrino (detected as muons arising from taus) is Φνμ+ν̄μ0+Φντ+ν ̄τ0=11.1×10-11TeV-1cm-2s-1, in the energy range between 1.6 TeV and 2.5 PeV for a flavor ratio Φνμ+ν̄μ0/ Φντ+ν̄τ0=1 and assuming a spectral index γ=2. It should be noticed that this is the first time we set upper limits to the flux of muon and tau neutrinos. In previous papers we provided muon neutrino upper limits only neglecting the sensitivity to a signal from tau neutrinos, which improves the limits by 10% to 16%. The value of the average upper limit presented in this work corresponds to twice the limit on the muon neutrino flux Φνμ+ν̄μ0=5.5×10-11TeV-1cm-2s-1. A stacking analysis for preselected active galactic nuclei and a search based on the angular separation of the events were also performed. We report the most stringent flux upper limits to date, including the results of a detailed assessment of systematic uncertainties. © 2007 The American Physical Society.