Properties of the Z(3) interface in (2+1)-D SU(3) gauge theory
NUCL PHYS B (1996) 535-538
Abstract:
A study is made of some properties of this interface in the SU(3) pure gauge theory in 2+1 dimensions. At high temperatures, the interface tension is measured and shows agreement with the perturbative prediction. Near the critical temperature, the behaviour of the interface is examined, and its fluctuations compared to a scalar field theory model.Big Bang nucleosynthesis and physics beyond the Standard Model
ArXiv hep-ph/9602260 (1996)
Abstract:
The Hubble expansion of galaxies, the $2.73\dK$ blackbody radiation background and the cosmic abundances of the light elements argue for a hot, dense origin of the universe --- the standard Big Bang cosmology --- and enable its evolution to be traced back fairly reliably to the nucleosynthesis era when the temperature was of $\Or(1)$ MeV corresponding to an expansion age of $\Or(1)$ sec. All particles, known and hypothetical, would have been created at higher temperatures in the early universe and analyses of their possible effects on the abundances of the synthesized elements enable many interesting constraints to be obtained on particle properties. These arguments have usefully complemented laboratory experiments in guiding attempts to extend physics beyond the Standard $SU(3)_{\c}{\otimes}SU(2)_{\L}{\otimes}U(1)_{Y}$ Model, incorporating ideas such as supersymmetry, compositeness and unification. We first present a pedagogical account of relativistic cosmology and primordial nucleosynthesis, discussing both theoretical and observational aspects, and then proceed to examine such constraints in detail, in particular those pertaining to new massless particles and massive unstable particles. Finally, in a section aimed at particle physicists, we illustrate applications of such constraints to models of new physics.Big Bang nucleosynthesis and physics beyond the Standard Model
(1996)