Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
Astroparticle Physics Elsevier
Abstract:
Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere.Probing the Neutrino Mass Ordering with Atmospheric Neutrinos from Three Years of IceCube DeepCore Data
European Physical Journal C: Particles and Fields Società Italiana di Fisica
Abstract:
The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above $\sim 1\,\mathrm{GeV}$, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present results of a first search for the signature of the NMO with three years of DeepCore data based on two independent analyses. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. For the more sensitive analysis, we observe a preference for Normal Ordering with a $p$-value of $p_\mathrm{IO} = 15.3\%$ and $\mathrm{CL}_\mathrm{s}=53.3\%$ for the Inverted Ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of $\delta_\mathrm{CP}$ and obtained from energies $E_\nu \gtrsim 5\,\mathrm{GeV}$, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.Projected bounds on ALPs from Athena
Monthly Notices of the Royal Astronomical Society Blackwell Publishing Inc.
Abstract:
Galaxy clusters represent excellent laboratories to search for Axion-Like Particles (ALPs). They contain magnetic fields which can induce quasi-sinusoidal oscillations in the X-ray spectra of AGNs situated in or behind them. Due to its excellent energy resolution, the X-ray Integral Field Unit (X-IFU) instrument onboard the Athena X-ray Observatory will be far more sensitive to ALP-induced modulations than current detectors. As a first analysis of the sensitivity of Athena to the ALP-photon coupling $g_{a \gamma \gamma}$, we simulate observations of the Seyfert galaxy NGC1275 in the Perseus cluster using the SIXTE simulation software. We estimate that for a 200ks exposure, a non-observation of spectral modulations will constrain ${g_{a\gamma\gamma}\lesssim1.5\times10^{-13}\rm{GeV}^{-1}}$ for $m_a \lesssim 10^{-12} \rm{eV}$, representing an order of magnitude improvement over constraints derived using the current generation of satellites.Putting the Boot into the Swampland
Journal of High Energy Physics Springer Verlag (Germany)