Exploration of mass splitting and muon/tau mixing parameters for an eV-scale sterile neutrino with IceCube

Physics Letters B Elsevier 858 (2024) 139077

Authors:

IceCube Collaboration, R Abbasi, M Ackermann, J Adams, SK Agarwalla, JA Aguilar, M Ahlers, JM Alameddine, NM Amin, K Andeen, C Argüelles, Y Ashida, S Athanasiadou, L Ausborm, SN Axani, X Bai, A Balagopal, M Baricevic, SW Barwick, S Bash, V Basu, R Bay, JJ Beatty, J Becker Tjus, J Beise, C Bellenghi, C Benning, S BenZvi, D Berley, E Bernardini, DZ Besson, E Blaufuss, L Bloom, S Blot, F Bontempo, JY Book Motzkin, C Boscolo Meneguolo, S Böser, O Botner, J Böttcher, J Braun, B Brinson, J Brostean-Kaiser, L Brusa, RT Burley, D Butterfield, MA Campana, I Caracas, K Carloni, J Carpio, S Chattopadhyay, N Chau, Z Chen, D Chirkin, S Choi, BA Clark, A Coleman, GH Collin, A Connolly, JM Conrad, P Coppin, R Corley, P Correa, DF Cowen, P Dave, C De Clercq, JJ DeLaunay, D Delgado, S Deng, A Desai, P Desiati, KD de Vries, G de Wasseige, T DeYoung, A Diaz, JC Díaz-Vélez, P Dierichs, M Dittmer, A Domi, L Draper, H Dujmovic, K Dutta, MA DuVernois, T Ehrhardt, L Eidenschink, A Eimer, P Eller, E Ellinger, S El Mentawi, D Elsässer, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, K Fang, K Farrag, AR Fazely, A Fedynitch, N Feigl, S Fiedlschuster, C Finley, L Fischer, D Fox, A Franckowiak, S Fukami, P Fürst, J Gallagher, E Ganster, A Garcia, M Garcia, G Garg, E Genton, L Gerhardt, A Ghadimi, C Girard-Carillo, C Glaser, T Glüsenkamp, JG Gonzalez, S Goswami, A Granados, D Grant, SJ Gray, O Gries, S Griffin, S Griswold, KM Groth, C Günther, P Gutjahr, C Ha, C Haack, A Hallgren, L Halve, F Halzen, H Hamdaoui, M Ha Minh, M Handt, K Hanson, J Hardin, AA Harnisch, P Hatch, A Haungs, J Häußler, K Helbing, J Hellrung, J Hermannsgabner, L Heuermann, N Heyer, S Hickford, A Hidvegi, C Hill, GC Hill, KD Hoffman, S Hori, K Hoshina, M Hostert, W Hou, T Huber, K Hultqvist, M Hünnefeld, R Hussain, K Hymon, A Ishihara, W Iwakiri, M Jacquart, O Janik, M Jansson, GS Japaridze, M Jeong, M Jin, BJP Jones, N Kamp, D Kang, W Kang, X Kang, A Kappes, D Kappesser, L Kardum, T Karg, M Karl, A Karle, A Katil, U Katz, M Kauer, JL Kelley, M Khanal, A Khatee Zathul, A Kheirandish, J Kiryluk, SR Klein, A Kochocki, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, T Kozynets, J Krishnamoorthi, K Kruiswijk, E Krupczak, A Kumar, E Kun, N Kurahashi, N Lad, C Lagunas Gualda, M Lamoureux, MJ Larson, S Latseva, F Lauber, JP Lazar, JW Lee, K Leonard DeHolton, A Leszczyńska, J Liao, M Lincetto, YT Liu, M Liubarska, E Lohfink, C Love, CJ Lozano Mariscal, L Lu, F Lucarelli, W Luszczak, Y Lyu, J Madsen, E Magnus, KBM Mahn, Y Makino, E Manao, S Mancina, W Marie Sainte, IC Mariş, S Marka, Z Marka, M Marsee, I Martinez-Soler, R Maruyama, F Mayhew, F McNally, JV Mead, K Meagher, S Mechbal, A Medina, M Meier, Y Merckx, L Merten, J Micallef, J Mitchell, T Montaruli, RW Moore, Y Morii, R Morse, M Moulai, T Mukherjee, R Naab, R Nagai, M Nakos, U Naumann, J Necker, A Negi, L Neste, M Neumann, H Niederhausen, MU Nisa, K Noda, A Noell, A Novikov, A Obertacke Pollmann, V O'Dell, B Oeyen, A Olivas, R Orsoe, J Osborn, E O'Sullivan, H Pandya, N Park, GK Parker, EN Paudel, L Paul, C Pérez de los Heros, T Pernice, J Peterson, S Philippen, A Pizzuto, M Plum, A Pontén, Y Popovych, M Prado Rodriguez, B Pries, R Procter-Murphy, GT Przybylski, C Raab, J Rack-Helleis, M Ravn, K Rawlins, Z Rechav, A Rehman, P Reichherzer, E Resconi, S Reusch, W Rhode, B Riedel, A Rifaie, EJ Roberts, S Robertson, S Rodan, G Roellinghoff, M Rongen, A Rosted, C Rott, T Ruhe, L Ruohan, D Ryckbosch, I Safa, J Saffer, D Salazar-Gallegos, P Sampathkumar, A Sandrock, M Santander, S Sarkar, S Sarkar, J Savelberg, P Savina, P Schaile, M Schaufel, H Schieler, S Schindler, B Schlüter, F Schlüter, N Schmeisser, T Schmidt, J Schneider, FG Schröder, L Schumacher, S Sclafani, D Seckel, M Seikh, M Seo, S Seunarine, P Sevle Myhr, R Shah, S Shefali, N Shimizu, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, A Søgaard, D Soldin, P Soldin, G Sommani, C Spannfellner, GM Spiczak, C Spiering, M Stamatikos, T Stanev, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, S Ter-Antonyan, A Terliuk, M Thiesmeyer, WG Thompson, J Thwaites, S Tilav, K Tollefson, C Tönnis, S Toscano, D Tosi, A Trettin, R Turcotte, JP Twagirayezu, MA Unland Elorrieta, AK Upadhyay, K Upshaw, A Vaidyanathan, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, J Vara, F Varsi, J Veitch-Michaelis, M Venugopal, M Vereecken, S Verpoest, D Veske, A Vijai, C Walck, A Wang, C Weaver, P Weigel, A Weindl, J Weldert, AY Wen, C Wendt, J Werthebach, M Weyrauch, N Whitehorn, CH Wiebusch, DR Williams, L Witthaus, A Wolf, M Wolf, G Wrede, XW Xu, JP Yanez, E Yildizci, S Yoshida, R Young, S Yu, T Yuan, Z Zhang, P Zhelnin, P Zilberman, M Zimmerman

Percolating cosmic string networks from kination

Phys.Rev.D 110 (2024) 8, 083537

Authors:

Joseph P. Conlon (Oxford U., Theor. Phys.), Edmund J. Copeland (Nottingham U.), Edward Hardy (Oxford U., Theor. Phys.), Noelia Sánchez González (Oxford U., Theor. Phys.)

Abstract:

We describe a new mechanism, whose ingredients are realized in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension μ decreases with time. If 2H+μ'/μ<0, where H
is the Hubble parameter and μ' denotes the time derivative of the tension, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate, and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling toward the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing large volume scenario vacua, this would lead to a fundamental string network with Gμ∼10^(-10).

Percolating cosmic string networks from kination

Physical Review D: Particles, Fields, Gravitation and Cosmology American Physical Society 110 (2024) 083537

Authors:

Joseph Conlon, EJ Copeland, Edward Hardy, Noelia Sánchez González

Abstract:

We describe a new mechanism, whose ingredients are realised in string compactifications, for the formation of cosmic (super)string networks. Oscillating string loops grow when their tension µ decreases with time. If 2H + ˙µ/µ < 0, where H is the Hubble parameter, loops grow faster than the scale factor and an initial population of isolated small loops (for example, produced by nucleation) can grow, percolate and form a network. This condition is satisfied for fundamental strings in the background of a kinating volume modulus rolling towards the asymptotic large volume region of moduli space. Such long kination epochs are motivated in string cosmology by both the electroweak hierarchy problem and the need to solve the overshoot problem. The tension of such a network today is set by the final vacuum; for phenomenologically appealing Large Volume Scenario (LVS) vacua, this would lead to a fundamental string network with Gµ ∼ 10−10.

Discovering neutrino tridents at the Large Hadron Collider

Physical Review D American Physical Society (APS) 110:7 (2024) 72018

Authors:

Wolfgang Altmannshofer, Toni Mäkelä, Subir Sarkar, Sebastian Trojanowski, Keping Xie, Bei Zhou

Abstract:

<jats:p>Neutrino trident production of dilepton pairs is well recognized as a sensitive probe of both electroweak physics and physics beyond the Standard Model. Although a rare process, it could be significantly boosted by such new physics, and it also allows the electroweak theory to be tested in a new regime. We demonstrate that the forward neutrino physics program at the Large Hadron Collider offers a promising opportunity to measure for the first time, dimuon neutrino tridents with a statistical significance exceeding <a:math xmlns:a="http://www.w3.org/1998/Math/MathML" display="inline"><a:mn>5</a:mn><a:mi>σ</a:mi></a:math>, improving on the previous claims at the <c:math xmlns:c="http://www.w3.org/1998/Math/MathML" display="inline"><c:mo>∼</c:mo><c:mn>3</c:mn><c:mi>σ</c:mi></c:math> level by the CHARM-II and CCFR collaborations while accounting for additional backgrounds later identified by the NuTeV collaboration. We present predictions for various proposed experiments and outline a specific experimental strategy to identify the signal and mitigate backgrounds, based on “reverse tracking” dimuon pairs in the <e:math xmlns:e="http://www.w3.org/1998/Math/MathML" display="inline"><e:mrow><e:mi>FASER</e:mi><e:mi>ν</e:mi><e:mn>2</e:mn></e:mrow></e:math> detector. We also discuss prospects for constraining beyond Standard Model contributions to neutrino trident rates at high energies.</jats:p> <jats:sec> <jats:title/> <jats:supplementary-material> <jats:permissions> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material> </jats:sec>

Chern-Simons Induced Thermal Friction on Axion Domain Walls

(2024)

Authors:

Saquib Hassan, Gaurang Ramakant Kane, John March-Russell, Georges Obied