Sensitivity to Sub-Io-sized Exosatellite Transits in the MIRI LRS Light Curve of the Nearest Substellar Worlds

Astrophysical Journal Letters 992:1 (2025)

Authors:

A Householder, MA Limbach, B Biller, B Kotten, MJ Wilson, JM Vos, A Skemer, A Vanderburg, BJ Sutlieff, X Chen, IJM Crossfield, N Crouzet, T Dupuy, J Faherty, P Liu, E Manjavacas, A McCarthy, CV Morley, PS Muirhead, N Oliveros-Gomez, G Suárez, X Tan, Y Zhou

Abstract:

JWST’s unprecedented sensitivity enables precise spectrophotometric monitoring of substellar worlds, revealing atmospheric variability driven by mechanisms operating across different pressure levels. This same precision now permits exceptionally sensitive searches for transiting exosatellites—small terrestrial companions to these worlds. Using a novel simultaneous dual-band search method to address host variability, we present a search for transiting exosatellites in an 8 hr JWST/MIRI LRS light curve of the nearby (2.0 pc) substellar binary WISE J1049–5319 AB, composed of two ∼30 MJup brown dwarfs separated by 3.5 au and viewed nearly edge-on. Although we detect no statistically significant transits, our injection/recovery tests demonstrate sensitivity to satellites as small as 0.275 R (0.96 RIo or ∼1 lunar radius), corresponding to 300 ppm transit depths, and satellite-to-host mass ratios >10−6. This approach paves the way for detecting Galilean moon analogs around directly imaged brown dwarfs, free-floating planets, and wide-orbit exoplanets, dozens of which are already scheduled for JWST light-curve monitoring. In our solar system, each giant planet hosts on average 3.5 moons above this threshold, suggesting that JWST now probes a regime where such companions are expected to be abundant. The technique and sensitivities demonstrated here mark a critical step toward detecting exosatellites and ultimately enabling constraints on the occurrence rates of small terrestrial worlds orbiting 1–70 MJup hosts.

The JWST weather report: Retrieving temperature variations, auroral heating, and static cloud coverage on SIMP-0136

Astronomy and Astrophysics 702 (2025)

Authors:

E Nasedkin, M Schrader, JM Vos, B Biller, B Burningham, NB Cowan, JK Faherty, E Gonzales, MB Lam, AM Mccarthy, PS Muirhead, C O’Toole, MK Plummer, G Suárez, X Tan, C Visscher, N Whiteford, Y Zhou

Abstract:

SIMP-0136 is a T2.5 brown dwarf whose young age (200 ± 50 Myr) and low mass (15 ± 3 MJup) make it an ideal analogue for the directly imaged exoplanet population. With a 2.4 hour period, it is known to be variable in both the infrared (IR) and the radio, which has been attributed to changes in the cloud coverage and the presence of an aurora, respectively. To quantify the changes in the atmospheric state that drive this variability, we obtained time-series spectra of SIMP-0136 covering one full rotation with both NIRSpec/PRISM and the MIRI/LRS on board JWST. We performed a series of time-resolved atmospheric retrievals using petitRADTRANS to measure changes in the temperature structure, chemistry, and cloudiness. We inferred the presence of a ~250 K thermal inversion above 10 mbar of SIMP-0136 at all phases and we propose that this inversion is due to the deposition of energy into the upper atmosphere by an aurora. Statistical tests were performed to determine which parameters were driving the observed spectroscopic variability. The primary contribution was due to changes in the temperature profile at pressures deeper than 10 mbar, which resulted in variation of the effective temperature from 1243 K to 1248 K. This changing effective temperature was also correlated to observed changes in the abundances of CO2 and H2S, while all other chemical species were consistent with being homogeneous throughout the atmosphere. Patchy silicate clouds were required to fit the observed spectra, but the cloud properties were not found to systematically vary with longitude. This work paints a portrait of an L-T transition object, where the primary variability mechanisms are magnetic and thermodynamic in nature, rather than due to inhomogeneous cloud coverage.

Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

Monthly Notices of the Royal Astronomical Society 541:3 (2025), pp. 2566–2584

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish C. F. C. Hay, Richard D. Chatterjee, Tim Lichtenberg, and Raymond T. Pierrehumbert

Abstract:

Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.

Self-limited tidal heating and prolonged magma oceans in the L 98-59 system

Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2566-2584

Authors:

Harrison Nicholls, Claire Marie Guimond, Hamish CFC Hay, Richard D Chatterjee, Tim Lichtenberg, Raymond T Pierrehumbert

Abstract:

Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.

A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres

Copernicus Publications (2025)

Authors:

Claire Marie Guimond, Oliver Shorttle, Raymond T Pierrehumbert

Abstract:

To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.