Sensitivity to Sub-Io-sized Exosatellite Transits in the MIRI LRS Light Curve of the Nearest Substellar Worlds
Astrophysical Journal Letters 992:1 (2025)
Abstract:
JWST’s unprecedented sensitivity enables precise spectrophotometric monitoring of substellar worlds, revealing atmospheric variability driven by mechanisms operating across different pressure levels. This same precision now permits exceptionally sensitive searches for transiting exosatellites—small terrestrial companions to these worlds. Using a novel simultaneous dual-band search method to address host variability, we present a search for transiting exosatellites in an 8 hr JWST/MIRI LRS light curve of the nearby (2.0 pc) substellar binary WISE J1049–5319 AB, composed of two ∼30 MThe JWST weather report: Retrieving temperature variations, auroral heating, and static cloud coverage on SIMP-0136
Astronomy and Astrophysics 702 (2025)
Abstract:
SIMP-0136 is a T2.5 brown dwarf whose young age (200 ± 50 Myr) and low mass (15 ± 3 M
Self-limited tidal heating and prolonged magma oceans in the L 98-59 system
Monthly Notices of the Royal Astronomical Society 541:3 (2025), pp. 2566–2584
Abstract:
Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.
Self-limited tidal heating and prolonged magma oceans in the L 98-59 system
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2566-2584
Abstract:
Rocky exoplanets accessible to characterization often lie on close-in orbits where tidal heating within their interiors is significant, with the L 98-59 planetary system being a prime example. As a long-term energy source for ongoing mantle melting and outgassing, tidal heating has been considered as a way to replenish lost atmospheres on rocky planets around active M-dwarfs. We simulate the early evolution of L 98-59 b, c, and d using a time-evolved interior-atmosphere modelling framework, with a self-consistent implementation of tidal heating and redox-controlled outgassing. Emerging from our calculations is a novel self-limiting mechanism between radiative cooling, tidal heating, and mantle rheology, which we term the ‘radiation-tide-rheology feedback’. Our coupled modelling yields self-limiting tidal heating estimates that are up to two orders of magnitude lower than previous calculations, and yet are still large enough to enable the extension of primordial magma oceans to Gyr time-scales. Comparisons with a semi-analytic model demonstrate that this negative feedback is a robust mechanism which can probe a given planet’s initial conditions, atmospheric composition, and interior structure. The orbit and instellation of the sub-Venus L 98-59 b likely place it in a regime where tidal heating has kept the planet molten up to the present day, even if it were to have lost its atmosphere. For c and d, a long-lived magma ocean can be induced by tides only with additional atmospheric regulation of energy transport.A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres
Copernicus Publications (2025)