The Cosmic Shoreline Revisited: A Metric for Atmospheric Retention Informed by Hydrodynamic Escape

(2025)

Authors:

Xuan Ji, Richard Chatterjee, Brandon Park Coy, Edwin Kite

Abstract:

The “cosmic shoreline”, a semi-empirical relation that separates airless worlds from worlds with atmospheres as proposed by Zahnle & Catling (2017), is now guiding large-scale JWST surveys aimed at detecting rocky exoplanet atmospheres. We expand upon this framework by revisiting the shorelines using existing hydrodynamic escape models applied to Earth-like, Venus-like, and steam atmospheres for rocky exoplanets, and we estimate energy-limited escape rates for CH4 atmospheres. We determine the critical instellation required for atmospheric retention by calculating time-integrated atmospheric mass loss. Our analysis introduces a new metric for target selection in the Rocky Worlds DDT and refines expectations for rocky planet atmosphere searches in Cycle 4. Exploring initial volatile inventory ranging from 0.01% to 1% of planetary mass, we find that its variation prevents the definition of a unique clear-cut shoreline, though non-linear escape physics can reduce this sensitivity to initial conditions. Additionally, uncertain distributions of high-energy stellar evolution and planet age further blur the critical instellations for atmospheric retention, yielding broad shorelines. Hydrodynamic escape models find atmospheric retention is markedly more favorable for higher-mass planets orbiting higher-mass stars, with carbon-rich atmospheres remaining plausible for 55 Cancri e despite its extreme instellation. Dedicated modelling efforts are needed to better constrain the escape dynamics of secondary atmospheres, such as the role of atomic line cooling, especially for Earth-sized planets. Finally, we illustrate how density measurements can be used to statistically test the existence of the cosmic shorelines, emphasizing the need for more precise mass and radius measurements.

The Role of Bottom Thermal Forcing on Modulating Baroclinic Instability in a Jupiter GCM

Copernicus Publications (2025)

Authors:

Xinmiao Hu, Peter Read, Roland Young, Greg Colyer

Abstract:

The atmospheric circulation of Jupiter is shaped by a complex interplay between deep internal processes and cloud-level dynamics. Numerical simulations and observational analyses have suggested that Jupiter’s mid-latitude jets are strongly influenced by baroclinic instability [1], which is governed by the planet’s atmospheric thermal structure. Jupiter emits a substantial intrinsic heat flux originating from its interior. Past modelling efforts [2, 3] have demonstrated that this internal energy plays a key role in shaping large-scale atmospheric dynamics.Our previous work [4] showed that latitudinal variations in interior heat flux can significantly impact the structure and behaviour of Jupiter’s mid-latitude jets in a General Circulation Model (GCM).  Such an impact is best illustrated by the relative vorticity snapshots from two simulations with the lowest and highest latitudinal flux gradient (see Figure 1). In this study, we present a more detailed analysis linking these jet modifications to changes in the atmospheric thermal structure and, consequently, to the strength and distribution of baroclinic eddy activity. In particular, we use the Lorenz energy cycle framework to diagnose how variations in deep thermal forcing influence baroclinic energy conversion and eddy-mean flow interactions. We further examine the implications for meridional transport and the water cycle within Jupiter’s weather layer.Additionally, we present a control simulation in which the potential temperature at the model’s lower boundary is forced toward a fixed value (a deep adiabat setup). We compute the equivalent upward heat flux associated with this forcing to place it in the context of previous models that impose constant or latitudinally varying interior heat flux. This allows a direct comparison of how different representations of deep thermal forcing affect upper-atmospheric dynamics.Finally, we discuss the broader implications of these findings for future weather-layer models of Jupiter and other gas giant planets, especially on the effect of bottom boundary conditions in representing the coupling between deep and observable atmospheric dynamics. Figure 1: Mollweide projection of the relative vorticity at 1 bar at the end of two simulations.Reference:[1] Read, P. L. (2023). The dynamics of Jupiter’s and Saturn’s weather layers: a synthesis after Cassini and Juno. Annual Review of Fluid Mechanics, 56(1), 271–293. https://doi.org/10.1146/annurev-fluid-121021-040058[2] Liu, J., & Schneider, T. (2011). Convective Generation of Equatorial Superrotation in Planetary Atmospheres. Journal of the Atmospheric Sciences, 68(11), 2742-2756. https://doi.org/10.1175/JAS-D-10-05013.1[3] Young, R. M. B., Read, P. L., & Wang, Y. (2018). Simulating Jupiter’s weather layer. Part I: Jet spin-up in a dry atmosphere. Icarus, 326, 225–252. https://doi.org/10.1016/j.icarus.2018.12.005[‌4] Hu, X. and Read, P.: Latitudinal Variation in Internal Heat Flux in Jupiter's Atmosphere: Effect on Weather Layer Dynamics, Europlanet Science Congress 2024, EPSC2024-669, https://doi.org/10.5194/epsc2024-669, 2024.

What are subNeptunes made of?

(2025)

Abstract:

This talk will cover the state of the art in whole-planet subNeptune modelling, and needs for the future.  Inferences about the composition of the deep envelope can be made on the basis of the way chemical transformations in the deep envelope may be evidenced in the observable atmosphere, such as has been attempted, for example, regarding the presence or absence of NH3 in the observable atmospheres of subNeptunes.  Such inferences require an understanding not only of deep envelope chemistry, but also of vertical mixing processes. The mixing process engages a number of poorly understood phenomena, such as mixing rates through stably stratified (nonconvective) internal radiative layers.  The occurrence of such radiative layers can be induced by compositional suppression of convection (e.g. due to high molecular weight H2O in an H2-rich atmosphere). We will review our modelling studies regarding this phenomenon.  Typically, the envelope-silicate interface is hot enough that the interface takes the form of a magma ocean, so compositional interchange with the magma ocean becomes crucial. This exchange includes rock vapours as well as lower molecular weight volatiles.  Our work on magma ocean exchanges will be reviewed. We highlight the importance of mineral physics experiments and molecular dynamics to provide crucially needed (and largely absent) thermodynamic parameters, particularly at high pressure.  At sufficiently high temperatures, silicate itself can become supercritical so that the distinction between silicate melt and silicate vapour disappears and the silicate substance becomes completely miscible with the lower molecular weight envelope.  Modeling and experiment regarding this novel and largely unexplored regime is particularly needed.

Absence of a Runaway Greenhouse Limit on Lava Planets

The Astrophysical Journal American Astronomical Society 987:2 (2025) 172

Authors:

Iris D Boer, Harrison Nicholls, Tim Lichtenberg

Abstract:

Climate transitions on exoplanets offer valuable insights into the atmospheric processes governing planetary habitability. Previous pure-steam atmospheric models show a thermal limit in outgoing long-wave radiation, which has been used to define the inner edge of the classical habitable zone and guide exoplanet surveys aiming to identify and characterize potentially habitable worlds. We expand upon previous modelling by treating (i) the dissolution of volatiles into a magma ocean underneath the atmosphere, (ii) a broader volatile range of the atmospheric composition including H2O, CO2, CO, H2, CH4, and N2, and (iii) a surface-temperature- and mantle-redox-dependent equilibrium chemistry. We find that multicomponent atmospheres of outgassed composition located above partially or fully molten mantles do not exhibit the characteristic thermal radiation limit that arises from pure-steam models, thereby undermining the canonical concept of a runaway greenhouse limit, and hence challenging the conventional approach of using it to define an irradiation-based habitable zone. Our results show that atmospheric heat loss to space is strongly dependent on the oxidation and melting state of the underlying planetary mantle, through their significant influence on the atmosphere’s equilibrium composition. This suggests an evolutionary hysteresis in climate scenarios: Initially molten and cooling planets do not converge to the same climate regime as solidified planets that heat up by external irradiation. Steady-state models cannot recover evolutionary climate transitions, which instead require self-consistent models of the temporal evolution of the coupled feedback processes between interior and atmosphere over geologic time.

JWST NIRISS transmission spectroscopy of the super-Earth GJ 357b, a favourable target for atmospheric retention

Monthly Notices of the Royal Astronomical Society Oxford University Press 540:4 (2025) 3677-3692

Authors:

Jake Taylor, Michael Radica, Richard D Chatterjee, Mark Hammond, Tobias Meier, Suzanne Aigrain, Ryan J MacDonald, Loic Albert, Björn Benneke, Louis-Philippe Coulombe, Nicolas B Cowan, Lisa Dang, René Doyon, Laura Flagg, Doug Johnstone, Lisa Kaltenegger, David Lafrenière, Stefan Pelletier, Caroline Piaulet-Ghorayeb, Jason F Rowe, Pierre-Alexis Roy

Abstract:

We present a JWST Near Infrared Imager and Slitless Spectrograph/Single Object Slitless Spectroscopy transmission spectrum of the super-Earth GJ 357 b: the first atmospheric observation of this exoplanet. Despite missing the first 40 per cent of the transit due to using an out-of-date ephemeris, we still recover a transmission spectrum that does not display any clear signs of atmospheric features. We perform a search for Gaussian-shaped absorption features within the data but find that this analysis yields comparable fits to the observations as a flat line. We compare the transmission spectrum to a grid of atmosphere models and reject, to 3 confidence, atmospheres with metallicities solar (4 g mol−1) with clouds at pressures down to 0.01 bar. We analyse how the retention of a secondary atmosphere on GJ 357 b may be possible due to its higher escape velocity compared to an Earth-sized planet and the exceptional inactivity of its host star relative to other M2.5V stars. The star’s XUV luminosity decays below the threshold for rapid atmospheric escape early enough that the volcanic revival of an atmosphere of several bars of CO is plausible, though subject to considerable uncertainty. Finally, we model the feasibility of detecting an atmosphere on GJ 357 b with MIRI/LRS, MIRI photometry, and NIRSpec/G395H. We find that, with two eclipses, it would be possible to detect features indicative of an atmosphere or surface. Further to this, with three to four transits, it would be possible to detect a 1 bar nitrogen-rich atmosphere with 1000 ppm of CO.