Optimising the use of ensemble information in numerical weather forecasts of wind power generation

Environmental Research Letters IOP Publishing 14:12 (2019) 124086-124086

Authors:

J Stanger, I Finney, A Weisheimer, T Palmer

Scale-Selective Precision for Weather and Climate Forecasting

MONTHLY WEATHER REVIEW 147:2 (2019) 645-655

Authors:

Matthew Chantry, Tobias Thornes, Tim Palmer, Peter Duben

Calibrating large-ensemble European climate projections using observational data

Earth System Dynamics Copernicus Publications 11:4 (2020) 1033-1049

Authors:

Christopher O'Reilly, Daniel Befort, Antje Weisheimer

Abstract:

This study examines methods of calibrating projections of future regional climate using large single model ensembles (the CESM Large Ensemble and MPI Grand Ensemble), applied over Europe. The three calibration methods tested here are more commonly used for initialised forecasts from weeks up to seasonal timescales. The calibration techniques are applied to ensemble climate projections, fitting seasonal ensemble data to observations over a reference period (1920–2016). The calibration methods were tested and verified using an imperfect model approach using the historical/RCP 8.5 simulations from the CMIP5 archive. All the calibration methods exhibit a similar performance, generally improving the out-of-sample projections in comparison to the uncalibrated (bias-corrected) ensemble. The calibration methods give results that are largely indistinguishable from one another, so the simplest of these methods, namely Homogeneous Gaussian Regression, is used for the subsequent analysis. An extension to this method – applying it to dynamically decomposed data (in which the underlying data is separated into dynamical and residual components) – is also tested. The verification indicates that this calibration method produces more reliable and accurate projections than the uncalibrated ensemble for future climate over Europe. The calibrated projections for temperature demonstrate a particular improvement, whereas the projections for changes in precipitation generally remain fairly unreliable. When the two large ensembles are calibrated using observational data, the climate projections for Europe are far more consistent between the two ensembles, with both projecting a reduction in warming but a general increase in the uncertainty of the projected changes.

Choosing the optimal numerical precision for data assimilation in the presence of model error

Journal of Advances in Modeling Earth Systems American Geophysical Union 10:9 (2018) 2177-2191

Authors:

Samuel Hatfield, Peter Düben, Matthew Chantry, Keiichi Kondo, Takemasa Miyoshi, Tim Palmer

Abstract:

The use of reduced numerical precision within an atmospheric data assimilation system is investigated. An atmospheric model with a spectral dynamical core is used to generate synthetic observations, which are then assimilated back into the same model using an ensemble Kalman filter. The effect on the analysis error of reducing precision from 64 bits to only 22 bits is measured and found to depend strongly on the degree of model uncertainty within the system. When the model used to generate the observations is identical to the model used to assimilate observations, the reduced‐precision results suffer substantially. However, when model error is introduced by changing the diffusion scheme in the assimilation model or by using a higher‐resolution model to generate observations, the difference in analysis quality between the two levels of precision is almost eliminated. Lower‐precision arithmetic has a lower computational cost, so lowering precision could free up computational resources in operational data assimilation and allow an increase in ensemble size or grid resolution.

Signal and noise in regime systems: A hypothesis on the predictability of the North Atlantic Oscillation

Quarterly Journal of the Royal Meteorological Society (2019)

Authors:

K Strommen, TN Palmer

Abstract:

© 2018 Royal Meteorological Society Studies conducted by the UK Met Office reported significant skill in predicting the winter North Atlantic Oscillation (NAO) index with their seasonal prediction system. At the same time, a very low signal-to-noise ratio was observed, as measured using the “ratio of predictable components” (RPC) metric. We analyse both the skill and signal-to-noise ratio using a new statistical toy model, which assumes NAO predictability is driven by regime dynamics. It is shown that if the system is approximately bimodal in nature, with the model consistently underestimating the level of regime persistence each season, then both the high skill and high RPC value of the Met Office hindcasts can easily be reproduced. Underestimation of regime persistence could be attributable to any number of sources of model error, including imperfect regime structure or errors in the propagation of teleconnections. In particular, a high RPC value for a seasonal mean prediction may be expected even if the model's internal level of noise is realistic.