A tropical haze band in Titan's stratosphere

Icarus 207:1 (2010) 485-490

Authors:

R de Kok, PGJ Irwin, NA Teanby, S Vinatier, F Tosi, A Negrão, S Osprey, A Adriani, ML Moriconi, A Coradini

Abstract:

Inspection of near-infrared images from Cassini's Imaging Science Subsystem and Visual and Infrared Mapping Spectrometer have revealed a new feature in Titan's haze structure: a narrow band of increased scattering by haze south of the equator. The band seems to indicate a region of very limited mixing in the lower stratosphere, which causes haze particles to be trapped there. This could explain the sharp separation between the two hemispheres, known as the north-south asymmetry, seen in images. The separation of the two hemispheres can also be seen in the stratosphere above 150 km using infrared spectra measured by Cassini's Composite Infrared Spectrometer. Titan's behaviour in the lower tropical stratosphere is remarkably similar to that of the Earth's tropical stratosphere, which hints at possible common dynamical processes. © 2009 Elsevier Inc. All rights reserved.

The climatology of the middle atmosphere in a vertically extended version of the met office's climate model. Part I: Mean state

Journal of the Atmospheric Sciences 67:5 (2010) 1509-1525

Authors:

SC Hardiman, N Butchart, SM Osprey, LJ Gray, AC Bushell, TJ Hinton

Abstract:

The climatology of a stratosphere-resolving version of the Met Office's climate model is studied and validated against ECMWF reanalysis data. Ensemble integrations are carried out at two different horizontal resolutions. Along with a realistic climatology and annual cycle in zonal mean zonal wind and temperature, several physical effects are noted in the model. The time of final warming of the winter polar vortex is found to descend monotonically in the Southern Hemisphere, as would be expected for purely radiative forcing. In the Northern Hemisphere, however, the time of final warming is driven largely by dynamical effects in the lower stratosphere and radiative effects in the upper stratosphere, leading to the earliest transition to westward winds being seen in the midstratosphere. A realistic annual cycle in stratospheric water vapor concentrations-the tropical "tape recorder"-is captured. Tropical variability in the zonal mean zonal wind is found to be in better agreement with the reanalysis for the model run at higher horizontal resolution because the simulated quasibiennial oscillation has a more realistic amplitude. Unexpectedly, variability in the extratropics becomes less realistic under increased resolution because of reduced resolved wave drag and increased orographic gravity wave drag. Overall, the differences in climatology between the simulations at high and moderate horizontal resolution are found to be small. © 2010 American Meteorological Society.

Why Is ENSO Influencing Northwest India Winter Precipitation in Recent Decades?

Journal of Climate American Meteorological Society 23:8 (2010) 1979-1993

Authors:

RK Yadav, JH Yoo, F Kucharski, MA Abid

Observation of muon intensity variations by season with the MINOS far detector

Physical Review D - Particles, Fields, Gravitation and Cosmology 81:1 (2010)

Authors:

P Adamson, C Andreopoulos, KE Arms, R Armstrong, DJ Auty, DS Ayres, C Backhouse, J Barnett, G Barr, WL Barrett, BR Becker, M Bishai, A Blake, B Bock, GJ Bock, DJ Boehnlein, D Bogert, C Bower, S Cavanaugh, JD Chapman, D Cherdack, S Childress, BC Choudhary, JH Cobb, SJ Coleman, D Cronin-Hennessy, AJ Culling, IZ Danko, JK De Jong, NE Devenish, MV Diwan, M Dorman, CO Escobar, JJ Evans, E Falk, GJ Feldman, TH Fields, MV Frohne, HR Gallagher, A Godley, MC Goodman, P Gouffon, R Gran, EW Grashorn, K Grzelak, A Habig, D Harris, PG Harris, J Hartnell, R Hatcher, K Heller, A Himmel, A Holin, J Hylen, GM Irwin, Z Isvan, DE Jaffe, C James, D Jensen, T Kafka, SMS Kasahara, G Koizumi, S Kopp, M Kordosky, K Korman, DJ Koskinen, Z Krahn, A Kreymer, K Lang, J Ling, PJ Litchfield, L Loiacono, P Lucas, J Ma, WA Mann, ML Marshak, JS Marshall, N Mayer, AM McGowan, R Mehdiyev, JR Meier, MD Messier, CJ Metelko, DG Michael, WH Miller, SR Mishra, J Mitchell, CD Moore, J Morfín, L Mualem, S Mufson, J Musser, D Naples, JK Nelson, HB Newman, RJ Nichol, TC Nicholls, JP Ochoa-Ricoux, WP Oliver, T Osiecki

Abstract:

The temperature of the upper atmosphere affects the height of primary cosmic ray interactions and the production of high-energy cosmic ray muons which can be detected deep underground. The MINOS far detector at Soudan, MN, has collected over 67×106 cosmic ray induced muons. The underground muon rate measured over a period of five years exhibits a 4% peak-to-peak seasonal variation which is highly correlated with the temperature in the upper atmosphere. The coefficient, αT, relating changes in the muon rate to changes in atmospheric temperature was found to be αT=0.873±0. 009(stat)±0.010(syst). Pions and kaons in the primary hadronic interactions of cosmic rays in the atmosphere contribute differently to αT due to the different masses and lifetimes. This allows the measured value of αT to be interpreted as a measurement of the K/π ratio for Ep 7TeV of 0.12-0.05+0.07, consistent with the expectation from collider experiments. © 2010 The American Physical Society.

An Earth-system prediction initiative for the twenty-first century

Bulletin of the American Meteorological Society 91:10 (2010) 1377-1388

Authors:

M Shapiro, J Shukla, G Brunet, C Nobre, M Béland, R Dole, K Trenberth, R Anthes, G Asrar, L Barrie, P Bougeault, G Brasseur, D Burridge, A Busalacchi, J Caughey, D Chen, J Church, T Enomoto, B Hoskins, Ø Hov, A Laing, H Le Treut, J Marotzke, G McBean, G Meehl, M Miller, B Mills, J Mitchell, M Moncrieff, T Nakazawa, H Olafsson, T Palmer, D Parsons, D Rogers, A Simmons, A Troccoli, Z Toth, L Uccellini, C Velden, JM Wallace

Abstract:

Some scientists have proposed the Earth-System Prediction Initiative (EPI) at the 2007 GEO Summit in Cape Town, South Africa. EPI will draw upon coordination between international programs for Earth system observations, prediction, and warning, such as the WCRP, WWRP, GCOS, and hence contribute to GEO and the GEOSS. It will link with international organizations, such as the International Council for Science (ICSU), Intergovernmental Oceanographic Commission (IOC), UNEP, WMO, and World Health Organization (WHO). The proposed initiative will provide high-resolution climate models that capture the properties of regional high-impact weather events, such as tropical cyclones, heat wave, and sand and dust storms associated within multi-decadal climate projections of climate variability and change. Unprecedented international collaboration and goodwill are necessary for the success of EPI.