Comparing the DES-SN5YR and Pantheon+ SN cosmology analyses: investigation based on ‘evolving dark energy or supernovae systematics’?
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2585-2593
Abstract:
Recent cosmological analyses measuring distances of type Ia supernovae (SNe Ia) and baryon acoustic oscillations (BAO) have all given similar hints at time-evolving dark energy. To examine whether underestimated SN Ia systematics might be driving these results, Efstathiou (2025) compared overlapping SN events between Pantheon+ and DES-SN5YR (20 per cent SNe are in common), and reported evidence for an 0.04 mag offset between the low- and high-redshift distance measurements of this subsample of events. If this offset is arbitrarily subtracted from the entire DES-SN5YR sample, the preference for evolving dark energy is reduced. In this paper, we show that this offset is mostly due to different corrections for Malmquist bias between the two samples; therefore, an object-to-object comparison can be misleading. Malmquist bias corrections differ between the two analyses for several reasons. First, DES-SN5YR used an improved model of SN Ia luminosity scatter compared to Pantheon+ but the associated scatter-model uncertainties are included in the error budget. Secondly, improvements in host mass estimates in DES-SN5YR also affected SN standardized magnitudes and their bias corrections. Thirdly, and most importantly, the selection functions of the two compilations are significantly different, hence the inferred Malmquist bias corrections. Even if the original scatter model and host properties from Pantheon+ are used instead, the evidence for evolving dark energy from CMB, DESI BAO Year 1 and DES-SN5YR is only reduced from 3.9 to 3.3, consistent with the error budget. Finally, in this investigation, we identify an underestimated systematic uncertainty related to host galaxy property uncertainties, which could increase the final DES-SN5YR error budget by 3 per cent. In conclusion, we confirm the validity of the published DES-SN5YR results.Monte Carlo radiation hydrodynamic simulations of line-driven disc winds: relaxing the isothermal approximation
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2393-2404
Abstract:
Disc winds play a crucial role in many accreting astrophysical systems across all scales. In accreting white dwarfs (AWDs) and active galactic nuclei (AGNs), radiation pressure on spectral lines is a promising wind-driving mechanism. However, the efficiency of line driving is extremely sensitive to the ionization state of the flow, making it difficult to construct a reliable physical picture of these winds. Recently, we presented the first radiation-hydrodynamics simulations for AWDs that incorporated detailed, multidimensional ionization calculations via fully frequency-dependent radiative transfer, using the sirocco code coupled to pluto. These simulations produced much weaker line-driven winds ( for our adopted parameters) than earlier studies using more approximate treatments of ionization and radiative transfer (which yielded ). One remaining limitation of our work was the assumption of an isothermal outflow. Here, we relax this by adopting an ideal gas equation of state and explicitly solving for the multidimensional temperature structure of the flow. In the AWD setting, accounting for the thermal state of the wind does not change the overall conclusions drawn from the isothermal approximation. Our new simulations confirm the line-driving efficiency problem: the predicted outflows are too highly ionized, meaning they neither create optimal driving conditions nor reproduce the observed ultraviolet wind signatures. Possible solutions include wind clumping on subgrid scales, a softer-than-expected spectral energy distribution or additional driving mechanisms. With the physics now built into our simulations, we are well equipped to also explore line-driven disc winds in AGN.The accretion–ejection connection in the black hole X-ray binary MAXI J1820+070
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:2 (2025) 1851-1865
Abstract:
The black hole X-ray binary MAXI J1820070 began its first recorded outburst in March 2018, and remained an active radio, X-ray, and optical source for over 4 yr. Due to the low distance to the source and its intrinsically high luminosity MAXI J1820070 was observed extensively over this time period, resulting in high-cadence and quasi-simultaneous observations across the electromagnetic spectrum. These data sets provide the opportunity to probe the connection between accretion and the launch of jets in greater detail than for the majority of black hole X-ray binaries. In this work, we present radio (Arcminute Microkelvin Imager Large Array, MeerKAT), X-ray (Swift), and optical (Las Cumbres Observatory) observations of MAXI J1820070 throughout its entire outburst, including its initial hard state, subsequent soft state, and further hard-state-only re-brightenings (covering March 2018 to August 2022). Due to the regularity and temporal density of our observational data we are able to create a Radio–X-ray–Optical activity plane where we find a high degree of correlation between the three wave bands during the hard states, and observe hysteresis as MAXI J1820070 enters and exits the soft state. Based on the morphology of the optical light curves we see evidence for optical jet contributions during the soft-to-hard state transition, as well as fading optical emission well before the hard to soft transition. We establish that the remarkably similar profiles of the re-brightening events are broadly consistent with modified disc instability models where irradiation from the inner accretion disc is included.Joint Radiative and Kinematic Modelling of X-ray Binary Ejecta: Energy Estimate and Reverse Shock Detection
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1085
Abstract:
Abstract Black hole X-ray binaries in outburst launch discrete, large-scale jet ejections which can propagate to parsec scales. The kinematics of these ejecta appear to be well described by relativistic blast wave models original devised for gamma-ray burst afterglows. In previous kinematic-only modelling, a crucial degeneracy prevented the initial ejecta energy and the interstellar medium density from being accurately determined. In this work, we present the first joint Bayesian modelling of the radiation and kinematics of a large-scale jet ejection from the X-ray binary MAXI J1535-571. We demonstrate that a reverse shock powers the bright, early ejecta emission. The joint model breaks the energetic degeneracy, and we find the ejecta has an initial energy of E0 ∼ 3 × 1043 erg, and propagates into a low density interstellar medium of nism ∼ 4 × 10−5 cm−3. The ejecta is consistent with being launched perpendicular to the disc and could be powered by an efficient conversion of available accretion power alone. This work lays the foundation for future parameter estimation studies using all available data of X-ray binary jet ejecta.Polarized Multiwavelength Emission from Pulsar Wind—Accretion Disk Interaction in a Transitional Millisecond Pulsar
The Astrophysical Journal Letters American Astronomical Society 987:1 (2025) L19