Sub-second optical/near-infrared quasi-periodic oscillations from the black hole X-ray transient Swift J1727.8–1613

Monthly Notices of the Royal Astronomical Society Oxford University Press 539:3 (2025) 2347-2361

Authors:

FM Vincentelli, T Shahbaz, P Casella, VS Dhillon, J Paice, D Altamirano, N Castro Segura, R Fender, P Gandhi, S Littlefair, T Maccarone, J Malzac, K O’Brien, DM Russell, AJ Tetarenko, P Uttley, A Veledina

Abstract:

We report on the detection of optical/near-infrared (O-IR) quasi-periodic oscillations (QPOs) from the black hole (BH) X-ray transient Swift J1727.8–1613. We obtained three X-ray and O-IR high-time-resolution observations of the source during its intermediate state (2023 September 9, 15, and 17) using NICER, HAWK-I@VLT, HIPERCAM@GTC, and ULTRACAM@NTT. We clearly detected a QPO in the X-ray and O-IR bands during all three epochs. The QPO evolved, drifting from 1.4 Hz in the first epoch, up to 2.2 Hz in the second, and finally reaching 4.2 Hz in the third epoch. These are among the highest O-IR QPO frequencies detected for a BH X-ray transient. During the first two epochs, the X-ray and O-IR emission are correlated, with an optical lag (compared to the X-rays) varying from +70 to 0 ms. Finally, during the third epoch, we measured, for the first time, a lag of the band with respect to the band at the QPO frequency ( +10 ms). By estimating the variable O-IR SED we find that the emission is most likely non-thermal. Current state-of-the-art models can explain some of these properties, but neither the jet nor the hot flow model can easily explain the observed evolution of the QPOs. While this allowed us to put tight constraints on these components, more frequent coverage of the state transition with fast multiwavelength observations is still needed to fully understand the evolution of the disc/jet properties in BH low-mass X-ray binaries.

The Thousand-Pulsar-Array programme on MeerKAT -- XVI. Mapping the Galactic magnetic field with pulsar observations

(2025)

Authors:

LS Oswald, P Weltevrede, B Posselt, S Johnston, A Karastergiou, ME Lower

Prompt gravitational-wave mergers aided by gas in active galactic nuclei: the hydrodynamics of binary-single black hole scatterings

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 539:2 (2025) 1501-1515

Authors:

Connar Rowan, Henry Whitehead, Gaia Fabj, Pankaj Saini, Bence Kocsis, Martin Pessah, Johan Samsing

Super-SNID: An Expanded Set of SNID Classes and Templates for the New Era of Wide-field Surveys

Research Notes of the American Astronomical Society American Astronomical Society 9:4 (2025) 78

Authors:

Dylan Magill, Michael D Fulton, Matt Nicholl, Stephen J Smartt, Charlotte R Angus, Shubham Srivastav, Ken W Smith

Abstract:

We present an expanded template library for the supernova identification (SNID) software, along with updated source files that make it easy to merge our templates—and other major SNID libraries—into the base code. This expansion, dubbed “Super-SNID,” increases the number of spectra for under-represented supernova classes (e.g., SNe Ia-02cx, Ibn) and adds new classes (e.g., SLSNe, TDEs, LFBOTs). Super-SNID includes 841 spectral templates for 161 objects, primarily from the Public ESO Spectroscopic Survey of Transient Objects Data Releases 1–4. The library is available on GitHub with simple installation instructions.

Rapid Rotation of Polarization Orientations in PSR B1919+21’s Single Pulses: Implications on Pulsar’s Magnetospheric Dynamics

The Astrophysical Journal American Astronomical Society 983:1 (2025) 43-43

Authors:

Shunshun Cao, Jinchen Jiang, Jaroslaw Dyks, Kejia Lee, Jiguang Lu, Lucy S Oswald, Weiyang Wang, Renxin Xu

Abstract:

Abstract We analyze and model rapid rotations of polarization orientations in PSR B1919+21’s single pulses based on Five-hundred-meter Aperture Spherical radio Telescope observation data. In more than one-third of B1919+21’s single pulses, the polarization position angle (PA) is found to rotate quasi-monotonically with pulse longitude over 180° or even 360°. Some single pulse PA even rotates by over 540°. Most of these quasi-monotonic PA curves have negative slopes with respect to pulse longitude. Oscillations of circular polarization fraction accompany these PA rotations. This rapid rotation could be induced by a quick change of phase lag between two normal wave modes within an individual pulse. We propose a phenomenological model to reproduce the observed polarization rotations in single pulses, and calculate phase lags in a dipolar magnetic field of an aligned rotating pulsar, with a dispersion relation of orthogonal wave modes in strongly magnetized electron-positron plasma. According to the dispersion relation, the weak frequency dependence of observed polarization rotation requires small angles between the radio wavevector and local magnetic fields, which requires the radio emission height to be low, on the order of 10 times neutron star radius.