Observability of dynamical tides in merging eccentric neutron star binaries
Physical Review D American Physical Society 110:10 (2024) 103043
Abstract:
While dynamical tides only become relevant during the last couple of orbits for circular inspirals, orbital eccentricity can increase their impact during earlier phases of the inspiral by exciting tidal oscillations at each close encounter. We investigate the effect of dynamical tides on the orbital evolution of eccentric neutron star binaries using post-Newtonian numerical simulations and construct an analytic stochastic model that reproduces the numerical results. Our study reveals a strong dependence of dynamical tides on the pericenter distance, with the fractional energy transferred to dynamical tides over that dissipated in gravitational waves (GWs) exceeding ∼1% at separations rp≲50 km for large eccentricities. We demonstrate that the effect of dynamical tides on orbital evolution can manifest as a phase shift in the GW signal. We show that the signal-to-noise ratio of the GW phase shift can reach the detectability threshold of 8 with a single advanced Laser Interferometer Gravitational Wave Observatory detector at design sensitivity for eccentric neutron star binaries at a distance of 40 Mpc. This requires a pericenter distance of rp0≲68 km (rp0≲76 km) at binary formation with eccentricity close to 1 for a reasonable tidal deformability and f-mode frequency of 500 and 1.73 kHz (700 and 1.61 kHz), respectively. The observation of the phase shift will enable measuring the f-mode frequency of neutron stars independently from their tidal deformability, providing significant insights into neutron star seismology and the properties of the equation of state. We also explore the potential of distinguishing between equal-radius and twin-star binaries, which could provide an opportunity to reveal strong first-order phase transitions in the nuclear equation of state.Anomaly Detection and RFI Classification with Unsupervised Learning in Narrowband Radio Technosignature Searches
ArXiv 2411.16556 (2024)
MIGHTEE: the continuum survey Data Release 1
Monthly Notices of the Royal Astronomical Society Oxford University Press 536:3 (2024) 2187-2211
Abstract:
The MeerKAT International GHz Tiered Extragalactic Exploration Survey (MIGHTEE) is one of the large survey projects using the MeerKAT telescope, covering four fields that have a wealth of ancillary data available. We present Data Release 1 of the MIGHTEE continuum survey, releasing total intensity images and catalogues over ∼20 deg2, across three fields at ∼1.2-1.3 GHz. This includes 4.2 deg2 over the Cosmic Evolution Survey (COSMOS) field, 14.4 deg2 over the XMM Large-Scale Structure (XMM-LSS) field and deeper imaging over 1.5 deg2 of the Extended Chandra Deep Field South (CDFS). We release images at both a lower resolution (7–9 arcsec) and higher resolution (∼5 arcsec). These images have central rms sensitivities of ∼1.3 −2.7 μJy beam−1 (∼1.2 −3.6 μJy beam−1) in the lower (higher) resolution images respectively. We also release catalogues comprised of ∼144 000 (∼114 000) sources using the lower (higher) resolution images. We compare the astrometry and flux-density calibration with the Early Science data in the COSMOS and XMM-LSS fields and previous radio observations in the CDFS field, finding broad agreement. Furthermore, we extend the source counts at the ∼10 μJy level to these larger areas (∼20 deg2) and, using the areal coverage of MIGHTEE we measure the sample variance for differing areas of sky. We find a typical sample variance of 10-20percnt for 0.3 and 0.5 sq. deg. sub-regions at S1.4 ≤ 200 μJy, which increases at brighter flux densities, given the lower source density and expected higher galaxy bias for these sources.Simultaneous optical and X-ray detection of a Thermonuclear Burst in the 2024 outburst of EXO 0748–676
Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) (2024) slae103
Evolution of the disky second generation of stars in globular clusters on cosmological timescale
(2024)