Large-area, highly uniform evaporated formamidinium lead triiodide thin-films for solar cells

ACS Energy Letters American Chemical Society 2 (2017) 2799-2804

Authors:

Juliane Borchert, Rebecca Milot, Jay B Patel, Christopher L Davies, Adam Wright, Laura Martinez Maestro, Henry J Snaith, Laura M Hertz, Michael Johnston

Abstract:

Perovskite thin-film solar cells are one of the most promising emerging renewable energy technologies because of their potential for low-cost, large-area fabrication combined with high energy conversion efficiencies. Recently, formamidinium lead triiodide (FAPbI3) and other formamidinium (CH(NH2)2) based perovskites have been explored as interesting alternatives to methylammonium lead triiodide (MAPbI3) because they exhibit better thermal stability. However, at present a major challenge is the scale-up of perovskite solar cells from small test-cells to full solar modules. We show that coevaporation is a scalable method for the deposition of homogeneous FAPbI3 thin films over large areas. The method allows precise control over film thickness and results in highly uniform, pinhole-free layers. Our films exhibited a high charge-carrier mobility of 26 cm2 V–1s–1, excellent optical properties, and a bimolecular recombination constant of 7 × 10–11 cm3 s–1. Solar cells fabricated using these vapor-deposited layers within a regular device architecture produced stabilized power conversion efficiencies of up to 14.2%. Thus, we demonstrate that efficient FAPbI3 solar cells can be vapor-deposited, which opens up a pathway toward large-area stable perovskite photovoltaics.

Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution

Fundacio Scito (2017)

Authors:

David McMeekin, Zhiping Wang, Waqaas Rehman, Federico Pulvirenti, Jay Patel, Nakita Noel, Seth Marder, Laura Herz, Henry Snaith

Self-assembled 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites for stable and efficient solar cells

Fundacio Scito (2017)

Authors:

Zhiping Wang, Qianqian Lin, Francis Chmiel, Nobuya Sakai, Laura Herz, Henry Snaith

The Importance of Interface Morphology for Hysteresis-Free Perovskite Solar Cells

Fundacio Scito (2017)

Authors:

Jay Patel, Jennifer Wong-Leung, Stephan Van Reenen, Nobuya Sakai, Jacob Wang, Elizabeth Parrott, Mingzhen Liu, Henry Snaith, Laura Herz, Michael Johnston

Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite.

Nano Letters American Chemical Society 17:9 (2017) 5782-5789

Authors:

Timothy W Crothers, Rebecca L Milot, Jay B Patel, Elizabeth S Parrott, Johannes Schlipf, Peter Müller-Buschbaum, Michael B Johnston, Laura M Herz

Abstract:

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CH3NH3PbI3 are strongly affected by photon reabsorption that masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50 and 533 nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases. However, by using a dynamical model that accounts for photon reabsorption and charge-carrier diffusion we determine that a single intrinsic bimolecular recombination coefficient of value 6.8 × 10-10 cm3s-1 is common to all samples irrespective of film thickness. Hence, we postulate that the wide range of literature values reported for such coefficients is partly to blame on differences in photon out-coupling between samples with crystal grains or mesoporous scaffolds of different sizes influencing light scattering, whereas thinner films or index-matched surrounding layers can reduce the possibility for photon reabsorption. We discuss the critical role of photon confinement on free charge-carrier retention in thin photovoltaic layers and highlight an approach to assess the success of such schemes from transient spectroscopic measurement.