Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites

Nature Energy Springer Nature 6 (2017) 17135

Authors:

Zhiping Wang, Qianqian Lin, Francis P Chmiel, Nobuya Sakai, Laura Herz, Henry J Snaith

Abstract:

Perovskite solar cells are remarkably efficient; however, they are prone to degradation in water, oxygen and ultraviolet light. Cation engineering in 3D perovskite absorbers has led to reduced degradation. Alternatively, 2D Ruddlesden–Popper layered perovskites exhibit improved stability, but have not delivered efficient solar cells so far. Here, we introduce n-butylammonium cations into a mixed-cation lead mixed-halide FA0.83Cs0.17Pb(IyBr1−y)3 3D perovskite. We observe the formation of 2D perovskite platelets, interspersed between highly orientated 3D perovskite grains, which suppress non-radiative charge recombination. We investigate the relationship between thin-film composition, crystal alignment and device performance. Solar cells with an optimal butylammonium content exhibit average stabilized power conversion efficiency of 17.5 ± 1.3% with a 1.61-eV-bandgap perovskite and 15.8 ± 0.8% with a 1.72-eV-bandgap perovskite. The stability under simulated sunlight is also enhanced. Cells sustain 80% of their ‘post burn-in’ efficiency after 1,000 h in air, and close to 4,000 h when encapsulated.

Photon Re-Absorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite

Nano Letters American Chemical Society 17:9 (2017) 5782-5789

Authors:

Timothy W Crothers, Rebecca L Milot, Jay B Patel, Elizabeth S Parrott, J Schlipf, P Muller-Buschbaum, Michael B Johnston, Laura Herz

Abstract:

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CH3NH3PbI3 are strongly affected by photon re-absorption which masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50nm and 533nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases. However, by using a dynamical model that accounts for photon re-absorption and charge-carrier diffusion we determine that a single intrinsic bimolecular recombination coefficient, of value 6.8x10(-10)cm(3)s(-1), is common to all samples irrespective of film thickness. Hence we postulate that the wide range of literature values reported for such coefficients is partly to blame on differences in photon out-coupling between samples, with crystal grains or mesoporous scaffolds of different sizes influencing light scattering, while thinner films or index-matched surrounding layers can reduce the possibility for photon re-absorption. We discuss the critical role of photon confinement on free charge-carrier retention in thin photovoltaic layers and highlight an approach to assess the success of such schemes from transient spectroscopic measurement.

Near-infrared and short-wavelength infrared photodiodes based on dye-perovskite composites

Advanced Functional Materials Wiley 27:38 (2017) 1702485

Authors:

Q Lin, Z Wang, M Young, JB Patel, RL Milot, L Martinez Maestro, RR Lunt, HJ Snaith, MB Johnston, Laura Herz

Abstract:

Organohalide perovskites have emerged as promising light-sensing materials because of their superior optoelectronic properties and low-cost processing methods. Recently, perovskite-based photodetectors have successfully been demonstrated as both broadband and narrowband varieties. However, the photodetection bandwidth in perovskite-based photodetectors has so far been limited to the near-infrared regime owing to the relatively wide band gap of hybrid organohalide perovskites. In particular, short-wavelength infrared photodiodes operating beyond 1 μm have not yet been realized with organohalide perovskites. In this study, narrow band gap organic dyes are combined with hybrid perovskites to form composite films as active photoresponsive layers. Tuning the dye loading allows for optimization of the spectral response characteristics and excellent charge-carrier mobilities near 11 cm 2 V -1 s -1 , suggesting that these composites combine the light-absorbing properties or IR dyes with the outstanding charge-extraction characteristics of the perovskite. This study demonstrates the first perovskite photodiodes with deep near-infrared and short-wavelength infrared response that extends as far as 1.6 μm. All devices are solution-processed and exhibit relatively high responsivity, low dark current, and fast response at room temperature, making this approach highly attractive for next-generation light-detection techniques.

Charge-Carrier Dynamics in Hybrid Metal Halide Perovskites for Photovoltaics and Light Emission

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Rebecca L Milot, Michael B Johnston, Laura M Herz

Investigations of Doping Via Optical Pump Terahertz-Probe Spectroscopy

Institute of Electrical and Electronics Engineers (IEEE) (2017) 1-1

Authors:

Jessica L Boland, A Casadei, G Tütüncouglu, F Matteini, C Davies, F Gaveen, F Amaduzzi, HJ Joyce, LM Herz, A Fontcuberta I Morral, Michael B Johnston