Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution

Fundacio Scito (2017)

Authors:

David McMeekin, Zhiping Wang, Waqaas Rehman, Federico Pulvirenti, Jay Patel, Nakita Noel, Seth Marder, Laura Herz, Henry Snaith

Self-assembled 2D-3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites for stable and efficient solar cells

Fundacio Scito (2017)

Authors:

Zhiping Wang, Qianqian Lin, Francis Chmiel, Nobuya Sakai, Laura Herz, Henry Snaith

The Importance of Interface Morphology for Hysteresis-Free Perovskite Solar Cells

Fundacio Scito (2017)

Authors:

Jay Patel, Jennifer Wong-Leung, Stephan Van Reenen, Nobuya Sakai, Jacob Wang, Elizabeth Parrott, Mingzhen Liu, Henry Snaith, Laura Herz, Michael Johnston

Unveiling the influence of pH on the crystallization of hybrid perovskites, felivering low voltage loss photovoltaics

Joule Cell Press 1:2 (2017) 328-343

Authors:

Nakita Noel, M Congiu, Alexandra J Ramadan, S Fearn, David P McMeekin, Jay B Patel, Michael B Johnston, Bernard Wenger, Henry J Snaith

Abstract:

Impressive power conversion efficiencies coupled with the relative ease of fabrication have made perovskite solar cells a front runner for next-generation photovoltaics. Although perovskite films and optoelectronic devices have been widely studied, relatively little is known about the chemistry of the precursor solutions. Here, we present a study on the hydrolysis of N,N-dimethylformamide, correlating how pH changes related to its degradation affect the crystallization of MAPbI3xClx perovskite films. By careful manipulation of the pH, and the resulting colloid distribution in precursor solutions, we fabricate perovskite films with greatly improved crystallinity, which when incorporated into photovoltaic devices reproducibly yield efficiencies of over 18%. Extending this method to the mixed cation, mixed halide perovskite FA0.83MA0.17Pb(I0.83Br0.17)3, we obtain power conversion efficiencies of up to 19.9% and open-circuit voltages of 1.21 V for a material with a bandgap of 1.57 eV, achieving the lowest yet reported loss in potential from bandgap to a VOC of only 360 mV.

Photon Reabsorption Masks Intrinsic Bimolecular Charge-Carrier Recombination in CH3NH3PbI3 Perovskite.

Nano Letters American Chemical Society 17:9 (2017) 5782-5789

Authors:

Timothy W Crothers, Rebecca L Milot, Jay B Patel, Elizabeth S Parrott, Johannes Schlipf, Peter Müller-Buschbaum, Michael B Johnston, Laura M Herz

Abstract:

An understanding of charge-carrier recombination processes is essential for the development of hybrid metal halide perovskites for photovoltaic applications. We show that typical measurements of the radiative bimolecular recombination constant in CH3NH3PbI3 are strongly affected by photon reabsorption that masks a much larger intrinsic bimolecular recombination rate constant. By investigating a set of films whose thickness varies between 50 and 533 nm, we find that the bimolecular charge recombination rate appears to slow by an order of magnitude as the film thickness increases. However, by using a dynamical model that accounts for photon reabsorption and charge-carrier diffusion we determine that a single intrinsic bimolecular recombination coefficient of value 6.8 × 10-10 cm3s-1 is common to all samples irrespective of film thickness. Hence, we postulate that the wide range of literature values reported for such coefficients is partly to blame on differences in photon out-coupling between samples with crystal grains or mesoporous scaffolds of different sizes influencing light scattering, whereas thinner films or index-matched surrounding layers can reduce the possibility for photon reabsorption. We discuss the critical role of photon confinement on free charge-carrier retention in thin photovoltaic layers and highlight an approach to assess the success of such schemes from transient spectroscopic measurement.