Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells

Advanced Energy Materials 6:8 (2016) 1502458

Authors:

Rebecca Sutton, GE Eperon, L Miranda, ES Parrott, BA Kamino, JB Patel, MT Hörantner, MB Johnston, Amir Abbas Haghighirad, DT Moore, HJ Snaith

Abstract:

Highest reported efficiency cesium lead halide perovskite solar cells are realized by tuning the bandgap and stabilizing the black perovskite phase at lower temperatures. CsPbI2Br is employed in a planar architecture device resulting in 9.8% power conversion efficiency and over 5% stabilized power output. Offering substantially enhanced thermal stability over their organic based counterparts, these results show that all-inorganic perovskites can represent a promising next step for photovoltaic materials.

Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite

Journal of Physical Chemistry Letters American Chemical Society 7:7 (2016) 1321-1326

Authors:

Elizabeth S Parrott, Rebecca L Milot, Thomas Stergiopoulos, Henry J Snaith, Michael B Johnston, Laura Herz

Abstract:

Methylammonium tin triiodide (MASnI3) has been successfully employed in lead-free perovskite solar cells, but overall power-conversion efficiencies are still significantly lower than for lead-based perovskites. Here we present photoluminescence (PL) spectra and time-resolved PL from 8 to 295 K and find a marked improvement in carrier lifetime and a substantial reduction in PL line width below ∼110 K, indicating that the cause of the hindered performance is activated at the orthorhombic to tetragonal phase transition. Our measurements therefore suggest that targeted structural change may be capable of tailoring the relative energy level alignment of defects (e.g., tin vacancies) to reduce the background dopant density and improve charge extraction. In addition, we observe for the first time an above-gap emission feature that may arise from higher-lying interband transitions, raising the prospect of excess energy harvesting.

Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

ACS Nano American Chemical Society 10:4 (2016) 4219-4227

Authors:

JL Boland, A Casadei, G Tutuncuoglu, F Matteini, CL Davies, F Jabeen, HJ Joyce, Laura Herz, A Fontcuberta I Morral, Michael Johnston

Abstract:

Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a non-contact method based on time resolved terahertz photoconductivity for assessing n and p type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18)cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13ns in undoped nanowires to 3.8ns and 2.5ns in n-doped and p-doped nanowires respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices such as solar cells and nanowire lasers.

Charge-carrier dynamics in organic-inorganic metal halide perovskites

Annual Review of Physical Chemistry Annual Reviews 67:1 (2016)

Abstract:

Hybrid organic-inorganic metal halide perovskites have recently emerged as exciting new light-harvesting and charge-transporting materials for efficient photovoltaic devices. Yet knowledge of the nature of the photogenerated excitations and their subsequent dynamics is only just emerging. This article reviews the current state of the field, focusing first on a description of the crystal and electronic band structure that give rise to the strong optical transitions that enable light harvesting. An overview is presented of the numerous experimental approaches toward determining values for exciton binding energies, which appear to be small (a few milli-electron volts to a few tens of milli-electron volts) and depend significantly on temperature because of associated changes in the dielectric function. Experimental evidence for charge-carrier relaxation dynamics within the first few picoseconds after excitation is discussed in terms of thermalization, cooling, and many-body effects. Charge-carrier recombination mechanisms are reviewed, encompassing trap-assisted nonradiative recombination that is highly specific to processing conditions, radiative bimolecular (electron-hole) recombination, and nonradiative many-body (Auger) mechanisms.

Breaking the symmetry in molecular nanorings

Journal of Physical Chemistry Letters American Chemical Society 7:2 (2016) 332-338

Authors:

Juliane Q Gong, Ludovic Favereau, Harry L Anderson, Laura Herz

Abstract:

Because of their unique electronic properties, cyclic molecular structures ranging from benzene to natural light-harvesting complexes have received much attention. Rigid π-conjugated templated porphyrin nanorings serve as excellent model systems here because they possess well-defined structures that can readily be controlled and because they support highly delocalized excitations. In this study, we have deliberately modified a series of six-porphyrin nanorings to examine the impact of lowering the rotational symmetry on their photophysical properties. We reveal that as symmetry distortions increase in severity along the series of structures, spectral changes and an enhancement of radiative emission strength occur, which derive from a transfer of oscillator strength into the lowest (k = 0) state. We find that concomitantly, the degeneracy of the dipole-allowed first excited (k = ±1) state is lifted, leading to an ultrafast polarization switching effect in the emission from strongly symmetry-broken nanorings.