Highly efficient, flexible, indium-free perovskite solar cells employing metallic substrates
Journal of Materials Chemistry A Royal Society of Chemistry (RSC) 3:17 (2015) 9141-9145
Semi-transparent perovskite solar cells for tandems with silicon and CIGS
Energy & Environmental Science Royal Society of Chemistry (RSC) 8:3 (2015) 956-963
Optical properties and limiting photocurrent of thin-film perovskite solar cells
Energy and Environmental Science Royal Society of Chemistry 8:2 (2014) 602-609
Abstract:
Metal-halide perovskite light-absorbers have risen to the forefront of photovoltaics research offering the potential to combine low-cost fabrication with high power-conversion efficiency. Much of the development has been driven by empirical optimisation strategies to fully exploit the favourable electronic properties of the absorber layer. To build on this progress, a full understanding of the device operation requires a thorough optical analysis of the device stack, providing a platform for maximising the power conversion efficiency through a precise determination of parasitic losses caused by coherence and absorption in the non-photoactive layers. Here we use an optical model based on the transfer-matrix formalism for analysis of perovskite-based planar heterojunction solar cells using experimentally determined complex refractive index data. We compare the modelled properties to experimentally determined data, and obtain good agreement, revealing that the internal quantum efficiency in the solar cells approaches 100%. The modelled and experimental dependence of the photocurrent on incidence angle exhibits only a weak variation, with very low reflectivity losses at all angles, highlighting the potential for useful power generation over a full daylight cycle.Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes.
The journal of physical chemistry letters 5:23 (2014) 4207-4212
Abstract:
Here, we report the use of polymer-wrapped carbon nanotubes as a means to enhance charge extraction through undoped spiro-OMeTAD. With this approach a good solar cell performance is achieved without the implementation of conventional doping methods. We demonstrate that a stratified two-layer architecture of sequentially deposited layers of carbon nanotubes and spiro-OMeTAD, outperforms a conventional blend of the hole-conductor and the carbon nanotubes. We also provide insights into the mechanism of the rapid hole extraction observed in the two-layer approach.Heterojunction modification for highly efficient organic-inorganic perovskite solar cells.
ACS nano 8:12 (2014) 12701-12709