Semi‐Transparent Polymer Solar Cells with Excellent Sub‐Bandgap Transmission for Third Generation Photovoltaics
Advanced Materials Wiley 25:48 (2013) 7020-7026
Spray Deposition of Silver Nanowire Electrodes for Semitransparent Solid‐State Dye‐Sensitized Solar Cells
Advanced Energy Materials Wiley 3:12 (2013) 1657-1663
Hyperbranched quasi-1D nanostructures for solid-state dye-sensitized solar cells.
ACS Nano 7:11 (2013) 10023-10031
Abstract:
In this work we demonstrate hyperbranched nanostructures, grown by pulsed laser deposition, composed of one-dimensional anatase single crystals assembled in arrays of high aspect ratio hierarchical mesostructures. The proposed growth mechanism relies on a two-step process: self-assembly from the gas phase of amorphous TiO2 clusters in a forest of tree-shaped hierarchical mesostructures with high aspect ratio; oriented crystallization of the branches upon thermal treatment. Structural and morphological characteristics can be optimized to achieve both high specific surface area for optimal dye uptake and broadband light scattering thanks to the microscopic feature size. Solid-state dye sensitized solar cells fabricated with arrays of hyperbranched TiO2 nanostructures on FTO-glass sensitized with D102 dye showed a significant 66% increase in efficiency with respect to a reference mesoporous photoanode and reached a maximum efficiency of 3.96% (among the highest reported for this system). This result was achieved mainly thanks to an increase in photogenerated current directly resulting from improved light harvesting efficiency of the hierarchical photoanode. The proposed photoanode overcomes typical limitations of 1D TiO2 nanostructures applied to ss-DSC and emerges as a promising foundation for next-generation high-efficiency solid-state devices comprosed of dyes, polymers, or quantum dots as sensitizers.Large area hole transporter deposition in efficient solid-state dye-sensitized solar cell mini-modules
Journal of Applied Physics 114:18 (2013)
Abstract:
We demonstrate the viability of large area processing for solid-state dye-sensitized solar cells. We fabricate mini-modules comprising two photoactive regions connected in series, of 8 cm2 total active area, using the technique of doctor blade coating to deposit the hole-transporter material. For the optimized protocol we lose only 25% of the power conversion efficiency when compared to standard test devices which are only 0.12 cm2. We estimate pore-filling fractions using reflectance spectroscopy, showing that device performance is linked to changes in the volume of the mesoporous TiO 2 photoanode infiltrated with hole-transporter as deposition temperature is varied. © 2013 AIP Publishing LLC.Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells
Journal of Physical Chemistry Letters 4:21 (2013) 3623-3630