On the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells

Optics InfoBase Conference Papers (2012)

Authors:

RS Santosh Kumar, G Grancini, A Petrozza, HJ Snaith, G Lanzani

Abstract:

Device optimization and ultrafast absorption spectroscopic investigations on the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells suggest their dual role of dye-regeneration and light-antenna assisting in improved photoconversionefficiencies.© 2012 OSA.

Semiconducting organic polymers as hole-transport layer in solid-state dye sensitized solar cells: Comprehensive insights from femtosecond transient spectroscopy and device optimization

2012 International Conference on Fiber Optics and Photonics, PHOTONICS 2012 (2012)

Authors:

RSS Kumar, G Grancini, A Petrozza, HJ Snaith, G Lanzani

Abstract:

Device optimization and ultrafast absorption spectroscopic investigations on the role of semiconducting polymer as hole-transport layer in solid-state dye sensitized solar cells suggest their dual role of dye-regeneration and light-antenna assisting in improved photoconversion-efficiencies. © 2012 OSA.

Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites

Science 338:6107 (2012) 643-647

Authors:

MM Lee, J Teuscher, T Miyasaka, TN Murakami, HJ Snaith

Abstract:

The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso- superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.

Science 338:6107 (2012) 643-647

Authors:

Michael M Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N Murakami, Henry J Snaith

Abstract:

The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

The origin of an efficiency improving "light soaking" effect in SnO 2 based solid-state dye-sensitized solar cells

Energy and Environmental Science 5:11 (2012) 9566-9573

Authors:

P Tiwana, P Docampo, MB Johnston, LM Herz, HJ Snaith

Abstract:

We observe a strong "light-soaking" effect in SnO 2 based solid-state dye-sensitized solar cells (SDSCs). Both with and without the presence of UV light, the device's short-circuit photocurrent and efficiency increase significantly over 20-30 minutes, until steady-state is achieved. We demonstrate that this is not due to improved charge collection and investigate the charge generation dynamics employing optical-pump terahertz-probe spectroscopy. We observe a monotonic speeding-up of the generation of free-electrons in the SnO 2 conduction band as a function of the light-soaking time. This improved charge generation can be explained by a positive shift in the conduction band edge or, alternatively, an increase in the density of states (DoS) at the energy at which photoinduced electron transfer occurs. To verify this hypothesis, we perform capacitance and charge extraction measurements which indicate a shift in the surface potential of SnO 2 of up to 70 mV with light soaking. The increased availability of states into which electrons can be transferred justifies the increase in both the charge injection rate and ensuing photocurrent. The cause for the shift in surface potential is not clear, but we postulate that it is due to the photoinduced charging of the SnO 2 inducing a rearrangement of charged species or loss of surface oxygen at the dye-sensitized heterojunction. Understanding temporally evolving processes in DSCs is of critical importance for enabling this technology to operate optimally over a prolonged period of time. This work specifically highlights important changes that can occur at the dye-sensitized heterojunction, even without direct light absorption in the metal oxide. © 2012 The Royal Society of Chemistry.