Atomic-scale microstructure of metalhalide perovskite
Science American Association for the Advancement of Science 370:6516 (2020) eabb5940
Abstract:
Hybrid organic-inorganic perovskites are exciting materials for solar-energy applications whose microscopic properties are still not well understood. Atomic-resolution (scanning) transmission electron microscopy, (S)TEM, has provided invaluable insights for many crystalline solar-cell materials, and is used here to successfully image CH(NH2)2PbI3 thin films with low electron-radiation dose. Such images reveal a highly ordered atomic arrangement of sharp grain boundaries and coherent perovskite/PbI2 interfaces, with a striking absence of long-range disorder in the crystal. We demonstrate that beaminduced degradation of the perovskite leads to an initial loss of CH(NH2)2 + ions, leaving behind a partially unoccupied perovskite lattice, which explains the unusual regenerative properties of these materials. We further observe aligned point defects and climbdissociated dislocations. Our findings thus provide an atomic-level understanding of technologically important lead-halide perovskites.Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method
Nano Energy Elsevier 80 (2020) 105511
Abstract:
The fabrication of perovskite film is crucial for achieving efficient perovskite photoelectric device. Herein, a simple and novel encapsulation growth method was applied to prepare high-quality quasi-2D perovskite films with advantages of compact and uniform morphology, high crystallinity with lower defect density, enhanced photoluminescence quantum yield (PLQY) and optimized multidimensional domain distribution and crystallite orientation for perovskite light-emitting diodes (PeLEDs). The encapsulation growth method was found to decrease the proportion of the low-dimensional (n = 1,2,3) domains while increasing the high-dimensional domains content with randomly-oriented crystals, which simultaneously enhanced the overall energy landscape effect and charges transport within the quasi-2D perovskite films, and the PLQY of the quasi-2D perovskites significantly improved from 9.2% to 60.0%. Finally, an efficient flexible green PeLEDs was obtained with a high luminous efficiency (LE) of 47.1 cd/A, and a luminance brightness of 8300 cd/m , and an efficient sky-blue PeLEDs was also achieved with record EQE of 12.8% by using encapsulation growth method. This encapsulation growth method provides a promising strategy for boosting the efficiency of quasi-2D PeLEDs. 216.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process
Nature Communications Springer Nature 11:1 (2020) 5254
Self-assembled Zn phthalocyanine as a robust p-type selective contact in perovskite solar cells
Nanoscale Horizons Royal Society of Chemistry (RSC) 5:10 (2020) 1415-1419
Thermally stable passivation toward high efficiency inverted perovskite solar cells
ACS Energy Letters American Chemical Society 5:11 (2020) 3336-3343