Charge‐carrier trapping and radiative recombination in metal halide perovskite semiconductors
Advanced Functional Materials Wiley 30:42 (2020) 2004312
Abstract:
Trap‐related charge‐carrier recombination fundamentally limits the performance of perovskite solar cells and other optoelectronic devices. While improved fabrication and passivation techniques have reduced trap densities, the properties of trap states and their impact on the charge‐carrier dynamics in metal‐halide perovskites are still under debate. Here, a unified model is presented of the radiative and nonradiative recombination channels in a mixed formamidinium‐cesium lead iodide perovskite, including charge‐carrier trapping, de‐trapping and accumulation, as well as higher‐order recombination mechanisms. A fast initial photoluminescence (PL) decay component observed after pulsed photogeneration is demonstrated to result from rapid localization of free charge carriers in unoccupied trap states, which may be followed by de‐trapping, or nonradiative recombination with free carriers of opposite charge. Such initial decay components are shown to be highly sensitive to remnant charge carriers that accumulate in traps under pulsed‐laser excitation, with partial trap occupation masking the trap density actually present in the material. Finally, such modelling reveals a change in trap density at the phase transition, and disentangles the radiative and nonradiative charge recombination channels present in FA0.95Cs0.05PbI3, accurately predicting the experimentally recorded PL efficiencies between 50 and 295 K, and demonstrating that bimolecular recombination is a fully radiative process.A Self-Assembled Small-Molecule-Based Hole-Transporting Material for Inverted Perovskite Solar Cells.
Chemistry (Weinheim an der Bergstrasse, Germany) 26:45 (2020) 10276-10282
Abstract:
Hybrid organic-inorganic perovskite solar cells have recently emerged as one of the most promising low-cost photovoltaic technologies. The remarkable progress of perovskite photovoltaics is closely related to advances in interfacial engineering and development of charge selective interlayers. Herein, we present the synthesis and characterization of a fused azapolyheteroaromatic small molecule, namely anthradi-7-azaindole (ADAI), with outstanding performance as a hole-transporting layer in perovskite solar cells with inverted architecture. Its molecular arrangement, induced by hydrogen-bond-directed self-assembly, favors a suitable morphology of the perovskite layer, reducing the effects of recombination as revealed by light intensity dependence, photoluminescence, and electroluminescence studies.Vacancy-Ordered Double Perovskite Cs2TeI6 Thin Films for Optoelectronics.
Chemistry of materials : a publication of the American Chemical Society 32:15 (2020) 6676-6684
Abstract:
Alternatives to lead- and tin-based perovskites for photovoltaics and optoelectronics are sought that do not suffer from the disadvantages of toxicity and low device efficiency of present-day materials. Here we report a study of the double perovskite Cs2TeI6, which we have synthesized in the thin film form for the first time. Exhaustive trials concluded that spin coating CsI and TeI4 using an antisolvent method produced uniform films, confirmed as Cs2TeI6 by XRD with Rietveld analysis. They were stable up to 250 °C and had an optical band gap of ∼1.5 eV, absorption coefficients of ∼6 × 104 cm-1, carrier lifetimes of ∼2.6 ns (unpassivated 200 nm film), a work function of 4.95 eV, and a p-type surface conductivity. Vibrational modes probed by Raman and FTIR spectroscopy showed resonances qualitatively consistent with DFT Phonopy-calculated spectra, offering another route for phase confirmation. It was concluded that the material is a candidate for further study as a potential optoelectronic or photovoltaic material.
Critical Assessment of the Use of Excess Lead Iodide in Lead Halide Perovskite Solar Cells
Journal of Physical Chemistry Letters 11, 6505–6512 (2020)
Abstract:
It is common practice in the lead halide perovskite solar cell field to add a small molar excess of lead iodide (PbI2) to the precursor solution to increase the device performance. However, recent reports have shown that an excess of PbI2 can accelerate performance loss. In addition, PbI2 is photoactive (band gap ∼2.3 eV), which may lead to parasitic absorption losses in a solar cell. Here we show that devices using small quantities of excess PbI2 exhibit better device performance as compared with stoichiometric devices, both initially and for the duration of a stability test under operating conditions, primarily by enhancing the charge extraction. However, the photolysis of PbI2 negates the beneficial effect on charge extraction by leaving voids in the perovskite film and introduces trap states that are detrimental for device performance. We propose that although excess PbI2 provides a good template for enhanced performance, the community must continue to seek other additives or synthesis routes that fulfill the same beneficial role as excess PbI2, but without the photolysis that negates these beneficial effects under long-term device operation.
A phosphine oxide route to formamidinium lead tribromide nanoparticles
Chemistry of Materials American Chemical Society 32:17 (2020) 7172-7180