A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells

Materials Chemistry Frontiers Royal Society of Chemistry (RSC) 5:1 (2021) 450-457

Authors:

Khaled Al Kurdi, Declan P McCarthy, David P McMeekin, Sebastian O Furer, Marie-Hélène Tremblay, Stephen Barlow, Udo Bach, Seth R Marder

Understanding Dark Current-Voltage Characteristics in Metal-Halide Perovskite Single Crystals

Physical Review Applied American Physical Society (APS) 15:1 (2021) 014006

Authors:

Elisabeth A Duijnstee, Vincent M Le Corre, Michael B Johnston, L Jan Anton Koster, Jongchul Lim, Henry J Snaith

Observation of Charge Generation via Photoinduced Stark Effect in Mixed-Cation Lead Bromide Perovskite Thin Films

The Journal of Physical Chemistry Letters American Chemical Society (ACS) 11:23 (2020) 10081-10087

Authors:

Nhu L Tran, Madeline H Elkins, David P McMeekin, Henry J Snaith, Gregory D Scholes

Time-Resolved Changes in Dielectric Constant of Metal Halide Perovskites under Illumination

Journal of the American Chemical Society American Chemical Society (ACS) 142:47 (2020) 19799-19803

Authors:

Min Ji Hong, Liangdong Zhu, Cheng Chen, Longteng Tang, Yen-Hung Lin, Wen Li, Rose Johnson, Shirsopratim Chattopadhyay, Henry J Snaith, Chong Fang, John G Labram

Dimethylammonium: An A‐site Cation for Modifying CsPbI3

Solar RRL Wiley (2020)

Authors:

Ashley R Marshall, Harry C Sansom, Melissa M McCarthy, Jonathan H Warby, Olivia J Ashton, Bernard Wenger, Henry J Snaith

Abstract:

All‐inorganic perovskite materials are attractive alternatives to organic‐inorganic perovskites because of their potential for higher thermal stability. While CsPbI3 is compositionally stable under elevated temperatures, the cubic perovskite α‐phase is thermodynamically stable only at >330°C and the low‐temperature perovskite γ−phase is metastable and highly susceptible to non‐perovskite δ‐phase conversion in moisture. Many methods have been reported which show that incorporation of acid (aqueous HI) or “HPbI3” – recently shown to be dimethylammonium lead iodide (DMAPbI3) – lower the annealing temperature required to produce the black, perovskite phase of CsPbI3. The optical and crystallographic data presented here show that DMA can successfully incorporate as an A‐site cation to replace Cs in the CsPbI3 perovskite material. This describes the stabilization and lower phase transition temperature reported in the literature when HI or HPbI3 are used as precursors for CsPbI3. The Cs‐DMA alloy only forms a pure‐phase material up to ∽25% DMA; at higher concentrations the CsPbI3 and DMAPbI3 begin to phase segregate. These alloyed materials are more stable to moisture than neat CsPbI3, but do not represent a fully inorganic perovskite material.