Revealing factors influencing the operational stability of perovskite light-emitting diodes
ACS Nano American Chemical Society 14:7 (2020) 8855-8865
Abstract:
Light-emitting diodes (LEDs) made from metal halide perovskites have demonstrated external electroluminescent quantum efficiencies (EQEEL) in excess of 20%. However, their poor operational stability, resulting in lifetimes of only tens to hundreds of hours, needs to be dramatically improved prior to commercial use. There is little consensus in the community upon which factors limit the stability of these devices. Here, we investigate the role played by ammonium cations on the operational stability. We vary the amount of phenylethylammonium bromide, a widely used alkylammonium salt, that we add to a precursor solution of CsPbBr3 and track changes in stability and EQEEL. We find that while phenylethylammonium bromide is beneficial in achieving high efficiency, it is highly detrimental to operational stability. We investigate material properties and electronic characteristics before and after degradation and find that both a reduction in the radiative efficiency of the emitter and significant changes in current–voltage characteristics explain the orders of magnitude drop in the EQEEL, which we attribute to increased ionic mobility. Our results suggest that engineering new contacts and further investigation into materials with lower ionic mobility should yield much improved stability of perovskite LEDs.Sn(IV)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution
Nature Communications Springer Nature 11:1 (2020) 3008
Publisher Correction: Deciphering photocarrier dynamics for tuneable high-performance perovskite-organic semiconductor heterojunction phototransistors
Nature Communications Springer Nature 11:1 (2020) 2956
Numerical analysis of high-efficiency lead-free perovskite solar cell with NiO as hole transport material and PCBM as electron transport material
CSI Transactions on ICT 8, 111–116 (2020)
Abstract:
In this work a lead free perovskite solar cell structure is proposed with NiO as the hole transport material (HTM), CH3NH3SnI3 as the perovskite absorber material and PCBM (phenyl C61 butyric acid methyl ester) as the electron transport material (ETM). Numerical analysis of the designed solar cell is performed using Solar Cell Capacitance Simulator (SCAPS-1D) program. The power conversion efficiency (PCE) of the optimized device stack is found to be above 29% with Voc = 0.98 V, Jsc = 34.86 mA/cm2, FF = 85.64%. The lead free perovskite solar cell with different HTM and ETM may be investigated for high PCE.
Metal composition influences optoelectronic quality in mixed-metal lead-tin triiodide perovskite solar absorbers
Energy and Environmental Science Royal Society of Chemistry 13:6 (2020) 1776-1787