The Impact of Device Polarity on the Performance of Polymer–Fullerene Solar Cells

Advanced Energy Materials Wiley 8:22 (2018)

Authors:

Mengmeng Li, Junyu Li, Dario Di Carlo Rasi, Fallon JM Colberts, Junke Wang, Gaël HL Heintges, Baojun Lin, Weiwei Li, Wei Ma, Martijn M Wienk, René AJ Janssen

Atomic layer deposited electron transport Layers in efficient organometallic halide perovskite devices

MRS Advances Cambridge University Press 3:51 (2018) 3075-3084

Authors:

MM McCarthy, A Walter, S-J Moon, Nakita Noel, S O’Brien, ME Pemble, S Nicolay, Bernard Wenger, Henry Snaith, IM Povey

Abstract:

Amorphous TiO2 and SnO2 electron transport layers (ETLs) were deposited by low-temperature atomic layer deposition (ALD). Surface morphology and x-ray photoelectron spectroscopy (XPS) indicate uniform and pinhole free coverage of these ALD hole blocking layers. Both mesoporous and planar perovskite solar cells were fabricated based on these thin films with aperture areas of 1.04 cm2 for TiO2 and 0.09 cm2 and 0.70 cm2 for SnO2. The resulting cell performance of 18.3 % power conversion efficiency (PCE) using planar SnO2 on 0.09 cm2 and 15.3 % PCE using mesoporous TiO2 on 1.04 cm2 active areas are discussed in conjunction with the significance of growth parameters and ETL composition.

Aligned and Graded Type‐II Ruddlesden–Popper Perovskite Films for Efficient Solar Cells

Advanced Energy Materials Wiley 8:21 (2018)

Authors:

Jian Qing, Xiao‐Ke Liu, Mingjie Li, Feng Liu, Zhongcheng Yuan, Elizaveta Tiukalova, Zhibo Yan, Martial Duchamp, Shi Chen, Yuming Wang, Sai Bai, Jun‐Ming Liu, Henry J Snaith, Chun‐Sing Lee, Tze Chien Sum, Feng Gao

Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells

Nano Energy Elsevier 49 (2018) 324-332

Authors:

Seulki Song, Rebecca Hill, Kyoungwon Choi, Konrad Wojciechowski, Stephen Barlow, Johannes Leisen, Henry J Snaith, Seth R Marder, Taiho Park

Enhanced photovoltage for inverted planar heterojunction perovskite solar cells

Science American Association for the Advancement of Science 360:6396 (2018) 1442-1446

Authors:

D Luo, W Yang, Zhiping Wang, A Sadhanala, Q Hu, R Su, R Shivanna, GF Trindade, JF Watts, Z Xu, T Liu, K Chen, F Ye, P Wu, L Zhao, J Wu, Y Tu, Y Zhang, X Yang, W Zhang, RH Friend, Q Gong, HJ Snaith, R Zhu

Abstract:

The highest power conversion efficiencies (PCEs) reported for perovskite solar cells (PSCs) with inverted planar structures are still inferior to those of PSCs with regular structures, mainly because of lower open-circuit voltages (Voc). Here we report a strategy to reduce nonradiative recombination for the inverted devices, based on a simple solution-processed secondary growth technique. This approach produces a wider bandgap top layer and a more n-type perovskite film, which mitigates nonradiative recombination, leading to an increase in Voc by up to 100 millivolts. We achieved a high Voc of 1.21 volts without sacrificing photocurrent, corresponding to a voltage deficit of 0.41 volts at a bandgap of 1.62 electron volts. This improvement led to a stabilized power output approaching 21% at the maximum power point.