Lucy Mission Search Plans for Activity around Its Jovian Trojan Flyby Targets
The Planetary Science Journal IOP Publishing 6:7 (2025) 177
Abstract:
Activity in small bodies, defined here as the episodic or continuous release of material, was long thought to be exclusively a behavior of comets, but it has since been discovered in some centaurs, main-belt asteroids, and near-Earth asteroids. To date, however, no activity has been discovered on Jovian trojan asteroids, the target of NASA’s Lucy Discovery Program mission. Although Lucy was originally conceived without studies of or searches for trojan activity, it was realized in 2016–2017 that the spacecraft and scientific payload aboard Lucy could provide unique and meaningful constraints or detections on activity in these trojans. Here we describe how the Lucy mission will search for such activity using (i) its terminal tracking navigation camera to search for wide-field coma scattered light, (ii) its Lucy Long Range Reconnaissance Imager narrow-angle camera to also search for scattered light from any coma or jets, and (iii) its Multispectral Visible Imaging Camera imager to search for CN emission (a common activity tracer species in comets). Sensitivity estimates for each of those measurements are discussed below.A Thermal Infrared Emission Spectral Morphology Study of Lizardite
(2025)
Abstract:
A comprehensive picture about Jovian clouds and hazes from Juno/JIRAM infrared spectral data
(2025)
Abstract:
A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres
Copernicus Publications (2025)
Abstract:
To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.An Overview of Lucy L'Ralph Observations at (52246) Donaldjohanson and (152830) Dinkinesh: Visible and Near-Infrared Data of Two Main Belt Asteroids
Copernicus Publications (2025)