Lucy Mission Search Plans for Activity around Its Jovian Trojan Flyby Targets

The Planetary Science Journal IOP Publishing 6:7 (2025) 177

Authors:

S Alan Stern, Carly Howett, Neil Dello Russo, Harold A Weaver, James F Bell, Dennis Reuter, Amy Simon, Hannah Kaplan, Keith Noll, John Spencer, Simone Marchi, Hal Levison

Abstract:

Activity in small bodies, defined here as the episodic or continuous release of material, was long thought to be exclusively a behavior of comets, but it has since been discovered in some centaurs, main-belt asteroids, and near-Earth asteroids. To date, however, no activity has been discovered on Jovian trojan asteroids, the target of NASA’s Lucy Discovery Program mission. Although Lucy was originally conceived without studies of or searches for trojan activity, it was realized in 2016–2017 that the spacecraft and scientific payload aboard Lucy could provide unique and meaningful constraints or detections on activity in these trojans. Here we describe how the Lucy mission will search for such activity using (i) its terminal tracking navigation camera to search for wide-field coma scattered light, (ii) its Lucy Long Range Reconnaissance Imager narrow-angle camera to also search for scattered light from any coma or jets, and (iii) its Multispectral Visible Imaging Camera imager to search for CN emission (a common activity tracer species in comets). Sensitivity estimates for each of those measurements are discussed below.

A Thermal Infrared Emission Spectral Morphology Study of Lizardite 

(2025)

Authors:

Eloïse Brown, Katherine Shirley, Neil Bowles, Tsutomu Ota, Masahiro Yamanaka, Ryoji Tanaka, Christian Potiszil

Abstract:

Research into compositions of small bodies and planetary surfaces, such as asteroids, is key to understanding the origin of water and organics on Earth [1], as well as placing constraints on planetary dynamics and migration models [2] that can help understand how planetary systems around other stars may form and evolve. Compositional estimates can be found with thermal infrared (TIR; 5-25μm) spectroscopy, as the TIR region is rich in diagnostic information and can be used in remote sensing observations and laboratory measurements. However, TIR spectra of the same material may appear differently depending on several factors, such as particle size, surface roughness, porosity etc. This work quantifies the changes in spectral morphology (i.e., shapes and depths of spectral features) as particle size transitions from fine (90%), at several size fractions, aimed to be

A comprehensive picture about Jovian clouds and hazes from Juno/JIRAM infrared spectral data

(2025)

Authors:

Francesco Biagiotti, Davide Grassi, Tristan Guillot, Leigh N Fletcher, Sushil Atreya, Giuliano Liuzzi, Geronimo Villanueva, Pascal Rannou, Patrick Irwin, Giuseppe Piccioni, Alessandro Mura, Federico Tosi, Alberto Adriani, Roberto Sordini, Raffaella Noschese, Andrea Cicchetti, Giuseppe Sindoni, Christina Plainaki, Cheng Li, Scott Bolton

Abstract:

Jupiter, the largest planet in our solar system, is a vital reference point for understanding gaseous exoplanets and their atmospheres. While we know its upper tropospheric chemical composition well, the nature and structure of its clouds remain puzzling. We, therefore, rely on theoretical models and remote sensing data to address this.While traditional equilibrium chemistry condensation models (ECCM) are sensitive to input parameters, advanced models [1] offer more realistic cloud property predictions. Remote sensing data can help determine cloud properties and test theoretical predictions thanks to the application of multiple scattering atmospheric retrieval. Still, the process is highly degenerate and, therefore, computationally demanding. The predicted tropospheric layers are upper ammonia ice (∼0.7 bar) and ammonium hydrosulfide (∼2 bar) clouds [2], but their spectral detection has been limited to small, dynamically active regions (

A geochemical view on the ubiquity of CO2 on rocky exoplanets with atmospheres

Copernicus Publications (2025)

Authors:

Claire Marie Guimond, Oliver Shorttle, Raymond T Pierrehumbert

Abstract:

To aid the search for atmospheres on rocky exoplanets, we should know what to look for. An unofficial paradigm is to anticipate CO2 present in these atmospheres, through analogy to the solar system and through theoretical modelling. This CO2 would be outgassed from molten silicate rock produced in the planet’s mostly-solid interior—an ongoing self-cooling mechanism that should proceed, in general, so long as the planet has sufficient internal heat to lose.Outgassing of CO2 requires relatively oxidising conditions. Previous work has noted the importance of how oxidising the planet interior is (the oxygen fugacity), which depends strongly on its rock composition. Current models presume that redox reactions between iron species control oxygen fugacity. However, iron alone need not be the sole dictator of how oxidising a planet is. Indeed, carbon itself is a powerful redox element, with great potential to feed back upon the mantle redox state as it melts. Whilst Earth is carbon-poor, even a slightly-higher volatile endowment could trigger carbon-powered geochemistry.We offer a new framework for how carbon is transported from solid planetary interior to atmosphere. The model incorporates realistic carbon geochemistry constrained by recent experiments on CO2 solubility in molten silicate, as well as redox couplings between carbon and iron that have never before been applied to exoplanets. We also incorporate a coupled 1D energy- and mass-balance model to provide first-order predictions of the rate of volcanism.We show that carbon-iron redox coupling maintains interior oxygen fugacity in a narrow range: more reducing than Earth magma, but not reducing enough to destabilise CO2 gas. We predict that most secondary atmospheres, if present, should contain CO2, although the total pressure could be low. An atmospheric non-detection may indicate a planet either born astonishingly dry, or having shut off its internal heat engine.

An Overview of Lucy L'Ralph Observations at (52246) Donaldjohanson and (152830) Dinkinesh: Visible and Near-Infrared Data of Two Main Belt Asteroids

Copernicus Publications (2025)

Authors:

Hannah Kaplan, Amy Simon, Dennis Reuter, Joshua Emery, Carly Howett, William Grundy, Jessica Sunshine, Silvia Protopapa, Allen Lunsford, Matthew Montanaro, Gerald Weigle, Ishita Solanki, Andy López-Oquendo, John Spencer, Keith Noll, Simone Marchi, Hal Levison, the Lucy Team

Abstract:

Lucy is the first mission to Jupiter Trojan asteroids, primitive bodies preserving crucial evidence of Solar System formation and evolution [1]. En route to its primary science encounters with the L4 swarm Trojans (2027-2028) and L5 swarm (2033), the spacecraft executed a flyby of asteroids (152830) Dinkinesh on November 1, 2023 and (52246) Donaldjohanson (DJ) on April 20, 2025. These Main Belt asteroid flybys function as operational rehearsals for the mission's Trojan targets. This work examines the performance of L'Ralph, a core Lucy science instrument, during these encounters, including data collection, instrument behavior, and analysis of the acquired datasets.L'Ralph integrates two complementary imaging systems spanning visible to near-infrared wavelengths (0.35-4 μm) [2]. The instrument has two focal plane assemblies: the Multi-spectral Visible Imaging Camera (MVIC) operating at 350-950 nm and the Linear Etalon Imaging Spectral Array (LEISA) covering 0.97-3.95 μm. LEISA delivers hyperspectral mapping capabilities with variable spectral resolving power (50-160, Δλ