Testing 2D temperature models in Bayesian retrievals of atmospheric properties from hot Jupiter phase curves

Monthly Notices of the Royal Astronomical Society Oxford University Press 525:4 (2023) 5146-5167

Authors:

Jingxuan Yang, Patrick GJ Irwin, Joanna K Barstow

Abstract:

Spectroscopic phase curves of transiting hot Jupiters are spectral measurements at multiple orbital phases, giving a set of disc-averaged spectra that probe multiple hemispheres. By fitting model phase curves to observations, we can constrain the atmospheric properties of hot Jupiters, such as molecular abundance, aerosol distribution, and thermal structure, which offer insights into their atmospheric dynamics, chemistry, and formation. We propose a novel 2D temperature parametrization consisting of a dayside and a nightside to retrieve information from near-infrared phase curves and apply the method to phase curves of WASP-43b observed by HST/Wide Field Camera 3 and Spitzer/Infra-Red Array Camera. In our scheme, the temperature is constant on isobars on the nightside and varies with cosn(longitude/ϵ) on isobars on the dayside, where n and ϵ are free parameters. We fit all orbital phases simultaneously using the radiative transfer package NEMESISPY coupled to a Bayesian inference code. We first validate the performance of our retrieval scheme with synthetic phase curves generated from a Global Circulation Model and find that our 2D scheme can accurately retrieve the latitudinally averaged thermal structure and constrain the abundance of H2O and CH4. We then apply our 2D scheme to the observed phase curves of WASP-43b and find: (1) The dayside temperature–pressure profiles do not vary strongly with longitude and are non-inverted. (2) The retrieved nightside temperatures are extremely low, suggesting significant nightside cloud coverage. (3) The H2O volume mixing ratio is constrained to 5.6 × 10−5–4.0 × 10−4, and we retrieve an upper bound for CH4 mixing ratio at ∼10−6.

Spectral determination of the colour and vertical structure of dark spots in Neptune’s atmosphere

Nature Astronomy Springer Nature 7 (2023) 1198-1207

Authors:

Pgj Irwin, J Dobinson, A James, Mh Wong, Ln Fletcher, Mt Roman, Na Teanby, D Toledo, Gs Orton, S Pérez-Hoyos, A Sánchez-Lavega, L Sromovsky, Aa Simon, R Morales-Juberías, Id Pater, Sl Cook

Abstract:

Previous observations of dark vortices in Neptune’s atmosphere, such as Voyager 2’s Great Dark Spot (1989), have been made in only a few broad-wavelength channels, hampering efforts to determine these vortices’ pressure levels and darkening processes. We analyse spectroscopic observations of a dark spot on Neptune identified by the Hubble Space Telescope as NDS-2018; the spectral observations were made in 2019 by the Multi Unit Spectroscopic Explorer (MUSE) of the Very Large Telescope (Chile). The MUSE medium-resolution 475–933 nm reflection spectra allow us to show that dark spots are caused by darkening at short wavelengths (<700 nm) of a deep ~5 bar aerosol layer, which we suggest is the H2S condensation layer. A deep bright spot, named DBS-2019, is also visible on the edge of NDS-2018, with a spectral signature consistent with a brightening of the same 5 bar layer at longer wavelengths (>700 nm). This bright feature is much deeper than previously studied dark-spot companion clouds and may be connected with the circulation that generates and sustains such spots.

Spectral determination of the colour and vertical structure of dark spots in Neptune's atmosphere

(2023)

Authors:

Patrick GJ Irwin, Jack Dobinson, Arjuna James Michael H Wong, Leigh N Fletcher, Michael T Roman, Nicholas A Teanby, Daniel Toledo, Glenn S Orton, Santiago Perez-Hoyos, Agustin Sanchez-Lavega, Lawrence Sromovsky, Amy A Simon, Raul Morales-Juberias, Imke de Pater, Statia L Cook

False positives are common in single-station template matching

Seismica Seismica 2:2 (2023)

Authors:

Jack B Muir, Benjamin Fernando, Elizabeth Barrett

Abstract:

Template matching has become a cornerstone technique of observational seismology. By taking known events, and scanning them against a continuous record, new events smaller than the signal-to-noise ratio can be found, substantially improving the magnitude of completeness of earthquake catalogues. Template matching is normally used in an array setting, however as we move into the era of planetary seismology, we are likely to apply template matching for very small arrays or even single stations. Given the high impact of planetary seismology studies on our understanding of the structure and dynamics of non-Earth bodies, it is important to assess the reliability of template matching in the small-n setting. Towards this goal, we estimate a lower bound on the rate of false positives for single-station template matching by examining the behaviour of correlations of totally uncorrelated white noise. We find that, for typical processing regimes and match thresholds, false positives are likely quite common. We must therefore be exceptionally careful when considering the output of template matching in the small-n setting.

Long-term variability of Jupiter's northern auroral 8-μm CH4 emissions

Icarus Elsevier 406 (2023) 115740

Authors:

Ja Sinclair, R West, Jm Barbara, C Tao, Gs Orton, Tk Greathouse, Rs Giles, D Grodent, Ln Fletcher, Pgj Irwin

Abstract:

We present a study of the long term variability of Jupiter's mid-infrared CH4 auroral emissions. 7.7–7.9 μm images of Jupiter recorded by NASA's Infrared Telescope Facility, Subaru and Gemini-South over the last three decades were collated in order to quantify the magnitude and timescales over which the northern auroral hotspot's CH4 emission varies. These emissions predominantly sound the 10- to 1-mbar pressure range and therefore highlight the temporal variability of lower-stratospheric auroral-related heating. We find that the ratio of the radiance of the poleward northern auroral emissions to a lower-latitude zonal-mean, henceforth ‘Relative Poleward Radiance’ or RPR, exhibits variability over a 37% range and over a range of apparent timescales. We searched for patterns of variability in order to test whether seasonally varying solar insolation, the 11-year solar cycle, or short-term solar wind variability at Jupiter's magnetopause could explain the observed evolution. The variability of the RPR exhibits a weak (r < 0.2) correlation with both the instantaneous and phase-lagged solar insolation received at Jupiter's high-northern latitudes. This rules out the hypothesis suggested in previous work (e.g. Sinclair et al. 2017a, 2018) that shortwave solar heating of aurorally produced haze particles is the dominant auroral-related heating mechanism in the lower stratosphere. We also find the variability exhibits negligible (r < 0.18) correlation with both the instantaneous and phase-lagged monthly-mean sunspot number, which therefore rules out a long-term variability associated with the solar cycle. On shorter timescales, we find moderate correlations of the RPR with solar wind conditions at Jupiter in the preceding days before images were recorded. For example, we find correlations of r = 0.45 and r = 0.51 of the RPR with the mean and standard deviation solar wind dynamical pressure in the preceding 7 days. The moderate correlation suggests that either: (1) only a subset of solar wind compressions lead to brighter, poleward CH4 emissions and/or (2) a subset of CH4 emission brightening events are driven by internal magnetospheric processes (e.g. Io activity) and independent of solar wind enhancements.