MIRMIS – The Modular Infrared Molecules and Ices Sensor for ESA’s Comet Interceptor.

(2025)

Authors:

Neil Bowles, Antti Näsilä, Tomas Kohout, Geronimo Villanueva, Chris Howe, Patrick Irwin, Antti Penttila, Alexander Kokka, Richard Cole, Sara Faggi, Aurelie Guilbert-Lepoutre, Silvia Protopapa, Aria Vitkova

Abstract:

Introduction: This presentation will describe the Modular Infrared Molecules and Ices Sensor currently in final assembly and test at the University of Oxford, UK and VTT Finland for ESA’s upcoming Comet interceptor mission.The Comet Interceptor mission: The Comet Interceptor mission [1] was selected by ESA as the first of its new “F” class of missions in June 2019 and adopted in June 2022.  Comet Interceptor (CI) aims to be the first mission to visit a long period comet, preferably, a Dynamically New Comet (DNC), a subset of long-period comets that originate in the Oort cloud and may preserve some of the most primitive material from early in our Solar System’s history. CI is scheduled to launch to the Earth-Sun L2 point with ESA’s ARIEL [2] mission in ~2029 where it will wait for a suitable DNC target.The CI mission is comprised of three spacecraft.  Spacecraft A will pass by the target nucleus at ~1000 km to mitigate against hazards caused by dust due to the wide range of possible encounter velocities (e.g. 10 – 70 km/s).  As well as acting as a science platform, Spacecraft A will deploy and provide a communications hub for two smaller spacecrafts, B1 (supplied by the Japanese space agency JAXA) and B2 that will perform closer approaches to the nucleus.  Spacecrafts B1 and B2 will make higher risk/higher return measurements but with the increased probability that they will not survive the whole encounter.The MIRMIS Instrument: The Modular InfraRed Molecules and Ices sensor (MIRMIS, Figure 1) instrument is part of the CI Spacecraft A scientific payload.  The MIRMIS consortium includes hardware contributions from Finland (VTT Finland) and the UK (University of Oxford) with members of the instrument team from the Universities of Helsinki, Lyon, NASA’s Goddard Space Flight Center, and Southwest Research Institute.MIRMIS will map the spatial distribution of temperatures, ices, minerals and gases in the nucleus and coma of the comet using covering a spectral range of 0.9 to 25 microns.  An imaging Fabry-Perot interferometer will provide maps of composition at a scale of ~180 m at closest approach from 0.9 to 1.7 microns.  A Fabry-Perot point spectrometer will make observations of the coma and nucleus at wavelengths from 2.5 to 5 microns and finally a thermal imager will map the temperature and composition of the nucleus at a spatial resolution of 260 m using a series of multi-spectral filters from 6 to 25 microns.  Figure 1: (Top) The MIRMIS instrument for ESA’s Comet Interceptor mission. (Bottom) The MIRMIS Structural Thermal model under test at University of Oxford.The MIRMIS instrument is compact (548.5 x 282.0 x 126.8 mm) and low mass (

Thermal-IR Observations of (152830) Dinkinesh during the Lucy Mission Flyby

The Planetary Science Journal American Astronomical Society 6:7 (2025) 168

Authors:

Samuel L Jackson, Joshua P Emery, Benjamin Rozitis, Philip R Christensen, John R Spencer, Stefano Mottola, Victoria E Hamilton, Carly JA Howett, Simone Marchi, Keith S Noll, Harold F Levison

Abstract:

NASA’s Lucy spacecraft flew by the main-belt asteroid (152830) Dinkinesh on 2023 November 1, providing a test of its instruments and systems prior to its encounters with the Jupiter Trojans and enabling an opportunity for scientific investigation of this asteroid. Analysis of disk-integrated radiance spectra of Dinkinesh collected by the Lucy Thermal Emission Spectrometer (L’TES) instrument during the close approach reveals a thermal inertia for Dinkinesh of 91 ± 24 J m−2 K−1 s−1/2 and a surface roughness of 35° ± 7° rms slope. These values for the thermal inertia and surface roughness are comparable to values derived for other small S-type asteroids such as (65803) Didymos. The Dinkinesh flyby also provided the opportunity to develop new techniques for extracting data when the target body does not fill the field of view of the L’TES instrument, which proved challenging for predecessors of this instrument such as OTES on OSIRIS-REx. The grain size of the regolith of Dinkinesh, estimated to be r=1.2−0.6+0.9 mm, is below expected trends with size but is comparable to that of similarly sized asteroids that are either binaries or may have undergone rotational fission in the past. These findings imply that fine-grained materials are being preferentially retained on the primaries of multiple systems, either by cohesive forces or by redeposition after impact events on the secondaries.

A 3D model simulation of hydrogen chloride photochemistry on Mars: Comparison with satellite data

Astronomy & Astrophysics EDP Sciences 699 (2025) a362

Authors:

Benjamin Benne, Paul I Palmer, Benjamin M Taysum, Kevin S Olsen, Franck Lefevre

Abstract:

Context. Hydrogen chloride (HCl) was independently detected in the Martian atmosphere by the Nadir and Occultation for MArs Discovery (NOMAD) and Atmospheric Chemistry Suite (ACS) spectrometers aboard the ExoMars Trace Gas Orbiter (TGO). Photochemical models show that using gas-phase chemistry alone is insufficient to reproduce these data. Recent work has developed a heterogeneous chemical network within a 1D photochemistry model, guided by the seasonal variability in HCl. This variability includes detection almost exclusively during the dust season, a positive correlation with water vapour, and an anticorrelation with water ice. Aims. The aim of this work is to show that incorporating heterogeneous chlorine chemistry into a global 3D model of Martian photochemistry with conventional gas-phase chemistry can reproduce spatial and temporal changes in hydrogen chloride on Mars, as observed by instruments aboard the TGO. Methods. We incorporated this heterogeneous chlorine scheme into the Mars Planetary Climate Model (MPCM). After some refinements to the scheme, mainly associated with it being employed in a 3D model, we used it to model chlorine photochemistry during Mars Years (MYs) 34 and 35. These two years provide contrasting dust scenarios, with MY 34 featuring a global dust storm. We also examined correlations in the model results between HCl and other key atmospheric quantities, as well as production and loss processes, to understand the impact of different factors driving changes in HCl. Results. We find that the 3D model of Martian photochemistry using the proposed heterogeneous chemistry is consistent with the changes in HCl observed by ACS in MY 34 and MY 35, including detections and 70% of non-detections. For the remaining 30% of non-detections, model HCl is higher than the ACS detection limit due to biases associated with water vapour, dust, or water ice content at these locations. As with previous 1D model calculations, we find that heterogeneous chemistry is required to describe the loss of HCl, resulting in a lifetime of a few sols that is consistent with the observed seasonal variation in HCl. As a result of this proposed chemistry, modelled HCl is correlated with water vapour, airborne dust, and temperature, and anticorrelated with water ice. Our work shows that this chemical scheme enables the reproduction of aphelion detections in MY 35.

Constraining the Mass and Energy of Enceladus’ Dissipation Systems

Space Science Reviews Springer 221:5 (2025) 56

Authors:

Carly JA Howett, Georgina M Miles, Lynnae C Quick

Abstract:

NASA’s Cassini mission revealed endogenic activity at the south pole of Saturn’s moon Enceladus. The activity is concentrated along four fractures in Enceladus’ ice shell, which are much warmer than their surroundings and the source of Enceladus’ plumes. This work provides a review of the current state of knowledge of the energy and mass lost by Enceladus through this activity. Specifically, we discuss the composition of the plumes, along with their spatial and temporal variation. The mass flux loss predicted for the three plume constituents (gas, dust and charged particles) is reviewed and a total mass flux of ejected material that subsequently escapes Enceladus is estimated to be 2.1×1011 kg over a Saturn year. Given that Enceladus’ ocean is predicted to be 1019 kg this loss is sustainable in the very long term (∼1.5 billion Earth years). However, unless a resupply mechanism (such as serpentinization) exists molecular hydrogen is expected to be depleted within ∼1 million Earth years. The difficulty in determining Enceladus’ current heat flow is outlined, along with the advantages and disadvantages of the various techniques used to derive it. We find a robust lower limit for Enceladus’ exogenic production is 7.3 GW. Tidal heating models show endogenic emission of this level is sustainable, and Enceladus may have long-term near-surface heating (a result supported by studies of Enceladus’ geology). Finally, we offer suggestions for future observations, instrumentation, and missions. Enceladus remains a high-priority target for NASA, and as such it is highly likely that we will return to study this enigmatic world. Hopefully these missions will answer some of the questions that remain.

Ionospheric Analysis With Martian Mutual Radio Occultation

Journal of Geophysical Research Planets 130:6 (2025)

Authors:

J Parrott, H Svedhem, B Sánchez-Cano, O Witasse, C Wilson, I Müller-Wodarg

Abstract:

This study presents a comprehensive analysis of the Martian ionosphere using Mutual Radio Occultation (RO) observations between Mars Express and Trace Gas Orbiter, featuring 71 full vertical profiles out of a total of 124 measurements. Among these, 35 measurements were taken from regions with Solar Zenith Angles lower than 40°. The profiles also represent the largest data set for the lower M1 ionospheric layer during the midday ever measured. This paper has also been submitted with a comprehensive data set, which marks the first time MEX-TGO RO data has been made available to the community. Additionally, neutral temperature profiles have been extracted from the measurements. We find unexpected features in the lower thermosphere temperature behavior which we conclude is likely due to the effects of local circulation and associated dynamical heating rather than solar-controlled.