Latitudinal variation of upper tropospheric NH3 on Saturn derived from Cassini/CIRS far-infrared measurements

Planetary and Space Science Elsevier 73:1 (2012) 347-363

Authors:

J Hurley, LN Fletcher, PGJ Irwin, SB Calcutt, JA Sinclair, C Merlet

Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan.

Nature 491:7426 (2012) 732-735

Authors:

Nicholas A Teanby, Patrick GJ Irwin, Conor A Nixon, Remco de Kok, Sandrine Vinatier, Athena Coustenis, Elliot Sefton-Nash, Simon B Calcutt, F Michael Flasar

Abstract:

Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the co-location of peak haze production and the limit of dynamical transport by the circulation's upper branch. Here we report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

The origin and evolution of saturn's 2011-2012 stratospheric vortex

Icarus 221:2 (2012) 560-586

Authors:

LN Fletcher, BE Hesman, RK Achterberg, PGJ Irwin, G Bjoraker, N Gorius, J Hurley, J Sinclair, GS Orton, J Legarreta, E García-Melendo, A Sánchez-Lavega, PL Read, AA Simon-Miller, FM Flasar

Abstract:

The planet-encircling springtime storm in Saturn's troposphere (December 2010-July 2011, Fletcher, L.N. et al. [2011]. Science 332, 1413-1414; Sánchez-Lavega, A. et al. [2011]. Nature 475, 71-74; Fischer, G. et al. [2011]. Nature 475, 75-77) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Thermal infrared (IR) spectroscopy from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based IR imaging from the VISIR instrument on the Very Large Telescope and the MIRSI instrument on NASA's IRTF, is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and March 2012. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5. mbar between 25 and 35°N (B1 and B2) between January-April 2011, moving westward with different zonal velocities, B1 residing directly above the convective tropospheric storm head; (II) the merging of the warm airmasses to form the large single 'stratospheric beacon' near 40°N (B0) between April and June 2011, disassociated from the storm head and at a higher pressure (2 mbar) than the original beacons, a downward shift of 1.4 scale heights (approximately 85. km) post-merger; and (III) the mature phase characterised by slow cooling (0.11. ±. 0.01. K/day) and longitudinal shrinkage of the anticyclone since July 2011. Peak temperatures of 221.6. ±. 1.4. K at 2. mbar were measured on May 5th 2011 immediately after the merger, some 80. K warmer than the quiescent surroundings. From July 2011 to the time of writing, B0 remained as a long-lived stable stratospheric phenomenon at 2. mbar, moving west with a near-constant velocity of 2.70. ±. 0.04. deg/day (-24.5. ±. 0.4. m/s at 40°N relative to System III longitudes). No perturbations to visible clouds and hazes were detected during this period.With no direct tracers of motion in the stratosphere, we use thermal windshear calculations to estimate clockwise peripheral velocities of 200-400m/s at 2mbar around B0. The peripheral velocities of the two original airmasses were smaller (70-140m/s). In August 2011, the size of the vortex as defined by the peripheral collar was 65° longitude (50,000km in diameter) and 25° latitude. Stratospheric acetylene (C 2H 2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C 2H 6) remained unaffected. The passage of B0 generated a new band of warm stratospheric emission at 0.5mbar at its northern edge, and there are hints of warm stratospheric structures associated with the beacons at higher altitudes (p<0.1mbar) than can be reliably observed by CIRS nadir spectroscopy. Analysis of the zonal windshear suggests that Rossby wave perturbations from the convective storm could have propagated vertically into the stratosphere at this point in Saturn's seasonal cycle, one possible source of energy for the formation of these stratospheric anticyclones. © 2012 Elsevier Inc.

PacMan returns: An electron-generated thermal anomaly on Tethys

Icarus Elsevier 221:2 (2012) 1084-1088

Authors:

CJA Howett, JR Spencer, T Hurford, A Verbiscer, M Segura

A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm

(2012)

Authors:

NP Gibson, S Aigrain, JK Barstow, TM Evans, LN Fletcher, PGJ Irwin