EChO

Experimental Astronomy Springer Science and Business Media LLC 34:2 (2012) 311-353

Authors:

G Tinetti, JP Beaulieu, T Henning, M Meyer, G Micela, I Ribas, D Stam, M Swain, O Krause, M Ollivier, E Pace, B Swinyard, A Aylward, R van Boekel, A Coradini, T Encrenaz, I Snellen, MR Zapatero-Osorio, J Bouwman, JY-K Cho, V Coudé de Foresto, T Guillot, M Lopez-Morales, I Mueller-Wodarg, E Palle, F Selsis, A Sozzetti, PAR Ade, N Achilleos, A Adriani, CB Agnor, C Afonso, C Allende Prieto, G Bakos, RJ Barber, M Barlow, V Batista, P Bernath, B Bézard, P Bordé, LR Brown, A Cassan, C Cavarroc, A Ciaravella, C Cockell, A Coustenis, C Danielski, L Decin, R De Kok, O Demangeon, P Deroo, P Doel, P Drossart, LN Fletcher, M Focardi, F Forget, S Fossey, P Fouqué, J Frith, M Galand, P Gaulme, JI González Hernández, O Grasset, D Grassi, JL Grenfell, MJ Griffin, CA Griffith, U Grözinger, M Guedel, P Guio, O Hainaut, R Hargreaves, PH Hauschildt, K Heng, D Heyrovsky, R Hueso, P Irwin, L Kaltenegger, P Kervella, D Kipping, TT Koskinen, G Kovács, A La Barbera, H Lammer, E Lellouch, G Leto, M Lopez Morales, MA Lopez Valverde, M Lopez-Puertas, C Lovis, A Maggio, JP Maillard, J Maldonado Prado, JB Marquette, FJ Martin-Torres, P Maxted, S Miller, S Molinari, D Montes, A Moro-Martin, JI Moses, O Mousis, N Nguyen Tuong, R Nelson, GS Orton, E Pantin, E Pascale, S Pezzuto, D Pinfield, E Poretti, R Prinja, L Prisinzano, JM Rees, A Reiners, B Samuel, A Sánchez-Lavega, J Sanz Forcada, D Sasselov, G Savini, B Sicardy, A Smith, L Stixrude, G Strazzulla, J Tennyson, M Tessenyi, G Vasisht, S Vinatier, S Viti, I Waldmann, GJ White, T Widemann, R Wordsworth, R Yelle, Y Yung, SN Yurchenko

EChO

Experimental Astronomy Springer Nature 34:2 (2012) 311-353

Authors:

G Tinetti, JP Beaulieu, T Henning, M Meyer, G Micela, I Ribas, D Stam, M Swain, O Krause, M Ollivier, E Pace, B Swinyard, A Aylward, R van Boekel, A Coradini, T Encrenaz, I Snellen, MR Zapatero-Osorio, J Bouwman, JY-K Cho, V Coudé de Foresto, T Guillot, M Lopez-Morales, I Mueller-Wodarg, E Palle, F Selsis, A Sozzetti, PAR Ade, N Achilleos, A Adriani, CB Agnor, C Afonso, C Allende Prieto, G Bakos, RJ Barber, M Barlow, V Batista, P Bernath, B Bézard, P Bordé, LR Brown, A Cassan, C Cavarroc, A Ciaravella, C Cockell, A Coustenis, C Danielski, L Decin, R De Kok, O Demangeon, P Deroo, P Doel, P Drossart, LN Fletcher, M Focardi, F Forget, S Fossey, P Fouqué, J Frith, M Galand, P Gaulme, JI González Hernández, O Grasset, D Grassi, JL Grenfell, MJ Griffin, CA Griffith, U Grözinger, M Guedel, P Guio, O Hainaut, R Hargreaves, PH Hauschildt, K Heng, D Heyrovsky, R Hueso, P Irwin, L Kaltenegger, P Kervella, D Kipping, TT Koskinen, G Kovács, A La Barbera, H Lammer, E Lellouch, G Leto, M Lopez Morales, MA Lopez Valverde, M Lopez-Puertas, C Lovis, A Maggio, JP Maillard, J Maldonado Prado, JB Marquette, FJ Martin-Torres, P Maxted, S Miller, S Molinari, D Montes, A Moro-Martin, JI Moses, O Mousis, N Nguyen Tuong, R Nelson, GS Orton, E Pantin, E Pascale, S Pezzuto, D Pinfield, E Poretti, R Prinja, L Prisinzano, JM Rees, A Reiners, B Samuel, A Sánchez-Lavega, J Sanz Forcada, D Sasselov, G Savini, B Sicardy, A Smith, L Stixrude, G Strazzulla, J Tennyson, M Tessenyi, G Vasisht, S Vinatier, S Viti, I Waldmann, GJ White, T Widemann, R Wordsworth, R Yelle, Y Yung, SN Yurchenko

Cumulative carbon as a policy framework for achieving climate stabilization.

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 370:1974 (2012) 4365-4379

Authors:

H Damon Matthews, Susan Solomon, Raymond Pierrehumbert

Abstract:

The primary objective of the United Nations Framework Convention on Climate Change is to stabilize greenhouse gas concentrations at a level that will avoid dangerous climate impacts. However, greenhouse gas concentration stabilization is an awkward framework within which to assess dangerous climate change on account of the significant lag between a given concentration level and the eventual equilibrium temperature change. By contrast, recent research has shown that global temperature change can be well described by a given cumulative carbon emissions budget. Here, we propose that cumulative carbon emissions represent an alternative framework that is applicable both as a tool for climate mitigation as well as for the assessment of potential climate impacts. We show first that both atmospheric CO(2) concentration at a given year and the associated temperature change are generally associated with a unique cumulative carbon emissions budget that is largely independent of the emissions scenario. The rate of global temperature change can therefore be related to first order to the rate of increase of cumulative carbon emissions. However, transient warming over the next century will also be strongly affected by emissions of shorter lived forcing agents such as aerosols and methane. Non-CO(2) emissions therefore contribute to uncertainty in the cumulative carbon budget associated with near-term temperature targets, and may suggest the need for a mitigation approach that considers separately short- and long-lived gas emissions. By contrast, long-term temperature change remains primarily associated with total cumulative carbon emissions owing to the much longer atmospheric residence time of CO(2) relative to other major climate forcing agents.

An integrated payload design for the Exoplanet Characterisation Observatory (EChO)

Proceedings of SPIE--the International Society for Optical Engineering SPIE, the international society for optics and photonics 8442 (2012) 84421g-84421g-14

Authors:

Bruce Swinyard, Giovanna Tinetti, Paul Eccleston, Alberto Adriani, Jean-Philippe Beaulieu, Tomas Belenguer Davila, Neil Bowles, Ian Bryson, Vincent Coudé du Foresto, Marc Ferlet, Paul Hartogh, Pierre-Olivier Lagage, Tanya Lim, Giuseppe Malaguti, Mercedes López-Morales, Giuseppina Micela, Gianluca Morgante, Hans Ulrik Nørgaard-Nielsen, Marc Ollivier, Emanuele Pace, Enzo Pascale, Giuseppe Piccioni, Gonzalo Ramos Zapata, Jean-Michel Reess, Ignasi Ribas, Alessandro Sozzetti, Jonathan Tennyson, Marcell Tessenyi, Mark R Swain, Berend Winter, Ingo Waldmann, Gillian Wright, Maria-Rosa Zapatero Osorio, Athena Coustenis

The application of new methane line absorption data to Gemini-N/NIFS and KPNO/FTS observations of Uranus' near-infrared spectrum

Icarus 220:2 (2012) 369-382

Authors:

PGJ Irwin, C de Bergh, R Courtin, B Bézard, NA Teanby, GR Davis, LN Fletcher, GS Orton, SB Calcutt, D Tice, J Hurley

Abstract:

New line data describing the absorption of CH 4 and CH 3D from 1.26 to 1.71μm (Campargue, A., Wang, L., Mondelain, D., Kassi, S., Bézard, B., Lellouch, E., Coustenis, A., de Bergh, C., Hirtzig, M., Drossart, P. [2012]. Icarus 219, 110-128), building upon previous papers by Campargue et al. (Campargue, A., Wang, L., Kassi, S., Masat, M., Votava, O. [2010]. J. Quant. Spectrosc. Radiat. Transfer 111, 1141-1151; Wang, L., Kassi, S., Campargue, A. [2010]. J. Quant. Spectrosc. Radiat. Transfer 111, 1130-1140; Wang, L., Kassi, S., Liu, A.W., Hu, S.M., Campargue, A. [2011]. J. Quant. Spectrosc. Radiat. Transfer 112, 937-951)) have been applied to the analysis of Gemini-N/NIFS observations of Uranus made in 2010 and compared with earlier disc-averaged observations made by KPNO/FTS in 1982. The new line data are found to improve greatly the fit to the observed spectra and present a huge advance over previous methane absorption tables by allowing us to determine the CH 3D/CH 4 ratio and also start to break the degeneracy between methane abundance and cloud top height. The best fits are obtained if the cloud particles in the main cloud deck at the 2-3bar level become less scattering with wavelength across the 1.4-1.6μm region and we have modelled this variation here by varying the extinction cross-section and single-scattering albedo of the particles.Applying the new line data to the NIFS spectra of Uranus, we determine a new estimate of the CH 3D/CH 4 ratio of 2.9-0.5+0.9×10-4, which is consistent with the estimate of de Bergh et al. (de Bergh, C., Lutz, B.L., Owen, T., Brault, J., Chauville, J. [1986]. Astrophys. J. 311, 501-510) of 3.6-2.8+3.6×10-4, made by fitting a disc-averaged KPNO/FTS spectrum measured in 1982, but much better constrained. The NIFS observations made in 2010 have been disc-averaged and compared with the 1982 KPNO/FTS spectrum and found to be in excellent agreement.Using k-tables fitted to the new line data, the central meridian observations of Uranus' H-band spectrum (1.49-1.64μm) made by Gemini-N/NIFS in 2010 have been reanalyzed. The use of the new methane absorption coefficients and the modified scattering properties of the cloud particles in the main cloud deck appears to break the degeneracy between cloud height and methane abundance immediately above it in this spectral region and we find that both vary with latitude across Uranus' disc. Overall, we find that the main cloud deck becomes higher, but thinner from equator to poles, with a local maximum in cloud top height in the circumpolar zones at 45°N and 45°S. At the same time, using the 'D' temperature pressure profile of Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92, 14987-15001) and a deep methane abundance of 1.6% (Baines, K.H., Mickelson, M.E., Larson, L.E., Ferguson, D.W. [1995]. Icarus 144, 328-340) we find that the relative humidity of methane is high near the equator (~60%) and decreases sharply towards the poles, except near the circumpolar zone at 45°N, which has brightened steadily since 2007, and where there is a local maximum in methane relative humidity. In tests conducted with the warmer 'F1' profile of Sromovsky et al. (2011) we find a similar variation of methane abundance above the main cloud, although for this warmer temperature profile this abundance is dependent mostly on the fitted deep methane mole fraction. © 2012 Elsevier Inc.