The Impact of Scattering Clouds when Studying Exoplanet Emission Spectra with JWST

Copernicus Publications (2024)

Authors:

Jake Taylor, Vivien Parmentier, Michael Line, Graham Lee, Patrick Irwin, Suzanne Aigrain

Trident: A Mission to Explore Triton, a Candidate Ocean World

Copernicus Publications (2024)

Authors:

Carly Howett, Louise Procktor, Karl Mitchell, David Bearden, William Smythe

Zonal Profiles of Jupiter's Tropospheric Abundances from Near-Infrared Juno JIRAM Spectroscopy

Copernicus Publications (2024)

Authors:

Henrik Melin, Leigh Fletcher, Patrick Irwin, Davide Grassi

The bulk mineralogy, elemental composition, and water content of the Winchcombe CM chondrite fall

Meteoritics and Planetary Science Wiley 59:5 (2024) 1006-1028

Authors:

HC Bates, AJ King, KS Shirley, E Bonsall, C Schröder, F Wombacher, T Fockenberg, RJ Curtis, NE Bowles

Constraining the global composition of D/H and 18O/16O in Martian water from SOFIA/EXES

Monthly Notices of the Royal Astronomical Society Oxford University Press 530:3 (2024) 2919-2932

Authors:

Juan Alday, S Aoki, C DeWitt, Franck Montmessin, J Holmes, M Patel, J Mason, Therese Encrenaz, M Richter, Patrick Irwin, F Daerden, N Terada, H Nakagawa

Abstract:

Isotopic ratios in water vapour carry important information about the water reservoir on Mars. Localised variations in these ratios can inform us about the water cycle and surface-atmosphere exchanges. On the other hand, the global isotopic composition of the atmosphere carries the imprints of the long-term fractionation, providing crucial information about the early water reservoir and its evolution throughout history. Here, we report the analysis of measurements of the D/H and 18O/16O isotopic ratios in water vapour in different seasons (𝐿S = 15◦ , 127◦ , 272◦ , 305◦ ) made with SOFIA/EXES. These measurements, free of telluric absorption, provide a unique tool for constraining the global isotopic composition of Martian water vapour. We find the maximum planetary D/H ratio in our observations during the northern summer (D/H = 5.2 ± 0.2 with respect to the Vienna Standard Mean Ocean Water, VSMOW) and to exhibit relatively small variations throughout the year (D/H = 5.0 ± 0.2 and 4.3 ± 0.4 VSMOW during the northern winter and spring, respectively), which are to first order consistent though noticeably larger than the expectations from condensation-induced fractionation. Our measurements reveal the annually-averaged isotopic composition of water vapour to be consistent with D/H = 5.0 ± 0.2 and 18O/16O = 1.09 ± 0.08 VSMOW. In addition, based on a comparison between the SOFIA/EXES measurements and the predictions from a Global Climate Model, we estimate the D/H in the northern polar ice cap to be ∼5% larger than that in the atmospheric reservoir (D/Hice = 5.3 ± 0.3 VSMOW).