Simulating gas giant exoplanet atmospheres with Exo-FMS: comparing semigrey, picket fence, and correlated-k radiative-transfer schemes

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 506:2 (2021) 2695-2711

Authors:

Elspeth KH Lee, Vivien Parmentier, Mark Hammond, Simon L Grimm, Daniel Kitzmann, Xianyu Tan, Shang-Min Tsai, Raymond T Pierrehumbert

Abstract:

Radiative-transfer (RT) is a fundamental part of modelling exoplanet atmospheres with general circulation models (GCMs). An accurate RT scheme is required for estimates of the atmospheric energy transport and for gaining physical insight from model spectra. We implement three RT schemes for Exo-FMS: semigrey, non-grey ‘picket fence’, and real gas with correlated-k. We benchmark the Exo-FMS GCM, using these RT schemes to hot Jupiter simulation results from the literature. We perform a HD 209458b-like simulation with the three schemes and compare their results. These simulations are then post-processed to compare their observable differences. The semigrey scheme results show qualitative agreement with previous studies in line with variations seen between GCM models. The real gas model reproduces well the temperature and dynamical structures from other studies. After post-processing our non-grey picket fence scheme compares very favourably with the real gas model, producing similar transmission spectra, emission spectra, and phase curve behaviours. Exo-FMS is able to reliably reproduce the essential features of contemporary GCM models in the hot gas giant regime. Our results suggest the picket fence approach offers a simple way to improve upon RT realism beyond semigrey schemes.

Instrumental requirements for the study of Venus’ cloud top using the UV imaging spectrometer VeSUV

Advances in Space Research (2021)

Authors:

E Marcq, F Montmessin, J Lasue, B Bézard, KL Jessup, YJ Lee, CF Wilson, B Lustrement, N Rouanet, G Guignan

Abstract:

Ultraviolet spectral imaging has been a powerful tool to investigate the cloud top of Venus, allowing for measurement of several minor gases (especially SO , SO, O ), of cloud top aerosol's microphysical properties and of atmospheric dynamics through tracking of the unevenly distributed UV absorber. After a brief review of recent UV instruments that orbited around Venus, we present the results of a state-of-the-art radiative transfer model from Marcq et al. (2020) to derive the spectral resolution and Signal-to-Noise ratio (SNR) required to derive abundances of these gases, retrieve optical properties of the aerosols beyond our current knowledge. This leads us to propose a two-channel UV hyperspectral push-broom imager called VeSUV (standing for Venusian Spectroscopy in UV) whose technical characteristics will improve on existing measurements by a factor of at least 2, and which is well suited to the integration into the payload of future low Venus orbit platforms such as the proposed EnVision mission to ESA M5 call. 2 3

A Spectral Investigation of Aqueously and Thermally Altered CM, CM‐An, and CY Chondrites Under Simulated Asteroid Conditions for Comparison With OSIRIS‐REx and Hayabusa2 Observations

Journal of Geophysical Research Planets American Geophysical Union (AGU) 126:7 (2021)

Authors:

HC Bates, KL Donaldson Hanna, AJ King, NE Bowles, SS Russell

Isotopic fractionation of water and its photolytic products in the atmosphere of Mars

Nature Astronomy Springer Nature 5:9 (2021) 943-950

Authors:

Juan Alday Parejo, Alexander Trokhimovskiy, Patrick GJ Irwin, Colin Wilson, Franck Montmessin, Franck Lefévre, Anna A Fedorova, Denis A Belyaev, Kevin S Olsen, Oleg Korablev, Margaux Vals, Loïc Rossi, Lucio Baggio, Jean-Loup Bertaux, Andrey Patrakeev, Alexey Shakun

Abstract:

The current Martian atmosphere is about five times more enriched in deuterium than Earth’s, providing direct testimony that Mars hosted vastly more water in its early youth than nowadays. Estimates of the total amount of water lost to space from the current mean D/H value depend on a rigorous appraisal of the relative escape between deuterated and non-deuterated water. Isotopic fractionation of D/H between the lower and the upper atmospheres of Mars has been assumed to be controlled by water condensation and photolysis, although their respective roles in influencing the proportions of atomic D and H populations have remained speculative. Here we report HDO and H2O profiles observed by the Atmospheric Chemistry Suite (ExoMars Trace Gas Orbiter) in orbit around Mars that, once combined with expected photolysis rates, reveal the prevalence of the perihelion season for the formation of atomic H and D at altitudes relevant for escape. In addition, while condensation-induced fractionation is the main driver of variations of D/H in water vapour, the differential photolysis of HDO and H2O is a more important factor in determining the isotopic composition of the dissociation products.

Photolysis controls the isotopic composition of water products escaping Mars’ atmosphere

Nature Astronomy Springer Nature 5 (2021) 943-950

Authors:

Juan Alday, Alexander Trokhimovskiy, Patrick Irwin, Colin Wilson, Franck Montmessin, Franck Lefèvre, Anna Fedorova, Denys Belyaev, Kevin Olsen, Oleg Korablev, Margaux Vals, Loïc Rossi, Lucio Baggio, Jean-Loup Bertaux, Andrey Patrakeev, Alexey Shakun

Abstract:

The current Martian atmosphere is about five times more enriched in deuterium than Earth’s, providing direct testimony that Mars hosted vastly more water in its early youth than nowadays. Estimates of the total amount of water lost to space from the current mean D/H value depend on a rigorous appraisal of the relative escape between deuterated and non-deuterated water. Isotopic fractionation of D/H between the lower and the upper atmospheres of Mars has been assumed to be controlled by water condensation and photolysis, although their respective roles in influencing the proportions of atomic D and H populations have remained speculative. Here we report HDO and H2O profiles observed by the Atmospheric Chemistry Suite (ExoMars Trace Gas Orbiter) in orbit around Mars that, once combined with expected photolysis rates, reveal the prevalence of the perihelion season for the formation of atomic H and D at altitudes relevant for escape. In addition, while condensation-induced fractionation is the main driver of variations of D/H in water vapour, the differential photolysis of HDO and H2O is a more important factor in determining the isotopic composition of the dissociation products.