Seasonal Evolution of Titan's Stratosphere During the Cassini Mission
GEOPHYSICAL RESEARCH LETTERS 46:6 (2019) 3079-3089
Jupiter's auroral-related stratospheric heating and chemistry III: Abundances of C 2 H 4 , CH 3 C 2 H, C 4 H 2 and C 6 H 6 from Voyager-IRIS and Cassini-CIRS
Icarus 328 (2019) 176-193
Abstract:
© 2019 Elsevier Inc. We present an analysis of Voyager-1-IRIS and Cassini-CIRS spectra of Jupiter's high latitudes acquired during the spacecrafts' respective flybys in November 1979 and January 2001. We performed a forward-model analysis in order to derive the abundances of ethylene (C 2 H 4 ), methylacetylene (CH 3 C 2 H), diacetylene (C 4 H 2 ) and benzene (C 6 H 6 ) in Jupiter's northern and southern auroral regions. We also compared these abundances to: 1) lower-latitude abundances predicted by the Moses et al. (2005) ‘Model A’ photochemical model, henceforth ‘Moses 2005A’, and 2) abundances derived at non-auroral longitudes in the same latitude band. This paper serves as an extension of Sinclair et al. (2017b), where we retrieved the vertical profiles of temperature, C 2 H 2 and C 2 H 6 from similar datasets. We find that an enrichment of C 2 H 4 , CH 3 C 2 H and C 6 H 6 with respect to lower-latitude abundances is required to fit the spectra of Jupiter's northern and southern auroral regions. For example, for CIRS 0.5 cm −1 spectra of Jupiter's southern auroral region, scale factor enrichments of 6.40 −1.15+1.30 and 9.60 −3.67+3.98 are required with respect to the Moses 2005A vertical profiles of C 2 H 4 and C 6 H 6 , respectively, in order to fit the spectral emission features of these species at ∼950 and ∼674 cm −1 . Similarly, in order to fit the CIRS 2.5 cm −1 spectra of Jupiter's northern auroral region, scale factor enrichments of 1.60 −0.21+0.37 , 3.40 −1.69+1.89 and 15.00 −4.02+4.01 with respect to the Moses 2005A vertical profiles of C 2 H 4 , CH 3 C 2 H and C 6 H 6 were required, respectively. Outside of Jupiter's auroral region in the same latitude bands, only upper-limit abundances of C 2 H 4 , CH 3 C 2 H and C 6 H 6 could be determined due to the limited sensitivity of the measurements, the weaker emission features combined with cooler stratospheric temperatures (and therefore decreased thermal emission) of these regions. Nevertheless, for a subset of the observations, derived abundances of C 2 H 4 and C 6 H 6 in Jupiter's auroral regions were higher (by 1 σ) with respect to upper-limit abundances derived outside the auroral region in the same latitude band. This is suggestive that the influx of energetic ions and electrons from the Jovian magnetosphere and external solar-wind environment into the neutral atmosphere in Jupiter's auroral regions drives enhanced ion-related chemistry, as has also been inferred from Cassini observations of Saturn's high latitudes (Fletcher et al., 2018; Guerlet et al., 2015; Koskinen et al., 2016). We were not able to constrain the abundance of C 4 H 2 in either Jupiter's auroral regions or non-auroral regions due to its lower (predicted) abundance and weaker emission feature. Thus, only upper-limit abundances were derived in both locations. From CIRS 2.5 cm −1 spectra, the upper limit abundance of C 4 H 2 corresponds to a scale factor enhancement of 45.6 and 23.8 with respect to the Moses 2005A vertical profile in Jupiter's non-auroral and auroral regions.New Horizons Photometry of Pluto's Moon Charon
The Astrophysical Journal Letters American Astronomical Society 874:1 (2019) l3
Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface
Nature Geoscience Springer Nature 12:4 (2019) 242-246
Abstract:
Small, kilometre-sized near-Earth asteroids are expected to have young and frequently refreshed surfaces for two reasons: collisional disruptions are frequent in the main asteroid belt where they originate, and thermal or tidal processes act on them once they become near-Earth asteroids. Here we present early measurements of numerous large candidate impact craters on near-Earth asteroid (101955) Bennu by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) mission, which indicate a surface that is between 100 million and 1 billion years old, predating Bennu’s expected duration as a near-Earth asteroid. We also observe many fractured boulders, the morphology of which suggests an influence of impact or thermal processes over a considerable amount of time since the boulders were exposed at the surface. However, the surface also shows signs of more recent mass movement: clusters of boulders at topographic lows, a deficiency of small craters and infill of large craters. The oldest features likely record events from Bennu’s time in the main asteroid belt.Evidence for widespread hydrated minerals on asteroid (101955) Bennu
Nature Astronomy Springer Nature 3:4 (2019) 332-340