Spatial and seasonal variations in C_3/H_x hydrocarbon abundance in Titan's stratosphere from Cassini CIRS observations

Icarus 317 (2019) 454-469

Authors:

NA Lombardo, CA Nixon, RK Achterberg, A Jolly, K Sung, PGJ Irwin, FM Flasar

Abstract:

© 2018 Of the C3Hxhydrocarbons, propane (C3H8) and propyne (methylacetylene, CH3C2H) were first detected in Titan's atmosphere during the Voyager 1 flyby in 1980. Propene (propylene, C3H6) was first detected in 2013 with data from the Composite InfraRed Spectrometer (CIRS) instrument on Cassini. We present the first measured abundance profiles of propene on Titan from radiative transfer modeling, and compare our measurements to predictions derived from several photochemical models. Near the equator, propene is observed to have a peak abundance of 10 ppbv at a pressure of 0.2 mbar. Several photochemical models predict the amount at this pressure to be in the range 0.3–1 ppbv and also show a local minimum near 0.2 mbar which we do not see in our measurements. We also see that propene follows a different latitudinal trend than the other C3molecules. While propane and propyne concentrate near the winter pole, transported via a global convective cell, propene is most abundant above the equator. We retrieve vertical abundances profiles between 125 km and 375 km for these gases for latitude averages between 60°S–20°S, 20°S–20°N, and 20°N–60°N over two time periods, 2004 through 2009 representing Titan's atmosphere before the 2009 equinox, and 2012 through 2015 representing time after the equinox. Additionally, using newly corrected line data, we determined an updated upper limit for allene (propadiene, CH2CCH2, the isomer of propyne). We claim a 3-σ upper limit mixing ratio of 2.5 × 10−9 within 30° of the equator. The measurements we present will further constrain photochemical models by refining reaction rates and the transport of these gases throughout Titan's atmosphere.

The NASA Roadmap to Ocean Worlds.

Astrobiology 19:1 (2019) 1-27

Authors:

Amanda R Hendrix, Terry A Hurford, Laura M Barge, Michael T Bland, Jeff S Bowman, William Brinckerhoff, Bonnie J Buratti, Morgan L Cable, Julie Castillo-Rogez, Geoffrey C Collins, Serina Diniega, Christopher R German, Alexander G Hayes, Tori Hoehler, Sona Hosseini, Carly JA Howett, Alfred S McEwen, Catherine D Neish, Marc Neveu, Tom A Nordheim, G Wesley Patterson, D Alex Patthoff, Cynthia Phillips, Alyssa Rhoden, Britney E Schmidt, Kelsi N Singer, Jason M Soderblom, Steven D Vance

Abstract:

In this article, we summarize the work of the NASA Outer Planets Assessment Group (OPAG) Roadmaps to Ocean Worlds (ROW) group. The aim of this group is to assemble the scientific framework that will guide the exploration of ocean worlds, and to identify and prioritize science objectives for ocean worlds over the next several decades. The overarching goal of an Ocean Worlds exploration program as defined by ROW is to "identify ocean worlds, characterize their oceans, evaluate their habitability, search for life, and ultimately understand any life we find." The ROW team supports the creation of an exploration program that studies the full spectrum of ocean worlds, that is, not just the exploration of known ocean worlds such as Europa but candidate ocean worlds such as Triton as well. The ROW team finds that the confirmed ocean worlds Enceladus, Titan, and Europa are the highest priority bodies to target in the near term to address ROW goals. Triton is the highest priority candidate ocean world to target in the near term. A major finding of this study is that, to map out a coherent Ocean Worlds Program, significant input is required from studies here on Earth; rigorous Research and Analysis studies are called for to enable some future ocean worlds missions to be thoughtfully planned and undertaken. A second finding is that progress needs to be made in the area of collaborations between Earth ocean scientists and extraterrestrial ocean scientists.

Washboard and fluted terrains on Pluto as evidence for ancient glaciation

Nature Astronomy Springer Nature 3:1 (2019) 62-68

Authors:

Oliver L White, Jeffrey M Moore, Alan D Howard, William B McKinnon, James T Keane, Kelsi N Singer, Tanguy Bertrand, Stuart J Robbins, Paul M Schenk, Bernard Schmitt, Bonnie J Buratti, S Alan Stern, Kimberly Ennico, Cathy B Olkin, Harold A Weaver, Leslie A Young

Magma ascent in planetesimals: control by grain size

Earth and Planetary Science Letters Elsevier 507 (2018) 154-165

Authors:

T Lichtenberg, T Keller, Richard Katz, GJ Golabek, TV Gerya

Abstract:

Rocky planetesimals in the early solar system melted internally and evolved chemically due to radiogenic heating from 26Al. Here we quantify the parametric controls on magma genesis and transport using a coupled petrological and fluid mechanical model of reactive two-phase flow. We find the mean grain size of silicate minerals to be a key control on magma ascent. For grain sizes ≳1 mm, melt segregation produces distinct radial structure and chemical stratification. This stratification is most pronounced for bodies formed at around 1 Myr after formation of Ca, Al-rich inclusions. These findings suggest a link between the time and orbital location of planetesimal formation and their subsequent structural and chemical evolution. According to our models, the evolution of partially molten planetesimal interiors falls into two categories. In the magma ocean scenario, the whole interior of a planetesimal experiences nearly complete melting, which would result in turbulent convection and core–mantle differentiation by the rainfall mechanism. In the magma sill scenario, segregating melts gradually deplete the deep interior of the radiogenic heat source. In this case, magma may form melt-rich layers beneath a cool and stable lid, while core formation would proceed by percolation. Our findings suggest that grain sizes prevalent during the internal heating stage governed magma ascent in planetesimals. Regardless of whether evolution progresses toward a magma ocean or magma sill structure, our models predict that temperature inversions due to rapid 26Al redistribution are limited to bodies formed earlier than ≈1 Myr after CAIs. We find that if grain size was ≲1 mm during peak internal melting, only elevated solid–melt density contrasts (such as found for the reducing conditions in enstatite chondrite compositions) would allow substantial melt segregation to occur.

Analysis of gaseous ammonia (NH$_3$) absorption in the visible spectrum of Jupiter - Update

(2018)

Authors:

Patrick GJ Irwin, Neil Bowles, Ashwin S Braude, Ryan Garland, Simon Calcutt, Phillip A Coles, Sergey N Yurchenko, Jonathan Tennyson