Multi-band study of the flaring mode emission in the transitional millisecond pulsar PSR J1023+0038
Astronomy & Astrophysics EDP Sciences 694 (2025) l19
The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample
The Astrophysical Journal American Astronomical Society 979:2 (2025) 189
Abstract:
In this work, we study the circumstellar material (CSM) around massive stars, and the mass-loss rates depositing this CSM, using a large sample of radio observations of 325 core-collapse supernovae (CCSNe; only ~22% of them being detected). This sample comprises both archival data and our new observations of 99 CCSNe conducted with the AMI-LA radio array in a systematic approach devised to constrain the mass loss at different stages of stellar evolution. In the supernova (SN)–CSM interaction model, observing the peak of the radio emission of an SN provides the CSM density at a given radius (and therefore the mass-loss rate that deposited this CSM). On the other hand, limits on the radio emission, and/or on the peak of the radio emission provide a region in the CSM phase space that can be ruled out. Our analysis shows a discrepancy between the values of mass-loss rates derived from radio-detected and radio-nondetected SNe. Furthermore, we rule out mass-loss rates in the range of 2 × 10−6–10−4 M⊙ yr−1 for different epochs during the last 1000 yr before the explosion (assuming wind velocity of 10 km s−1) for the progenitors of ~80% of the Type II supernovae (SNe II) in our sample. In addition, we rule out the ranges of mass-loss rates suggested for red supergiants for ~50% of the progenitors of SNe II in our sample. We emphasize here that these results take a step forward in constraining mass loss in winds from a statistical point of view.Type I X-ray Bursts Reflected During the X-ray Eclipses of EXO 0748-676
(2025)
The observed phase space of mass-loss history from massive stars based on radio observations of a large supernova sample
(2025)
Dependence of Metal Enrichment of Nuclear Star Clusters on Galaxy Stellar Mass
The Astrophysical Journal American Astronomical Society 979:1 (2025) 85