On the relationship between the cosmic web and the alignment of galaxies and AGN jets

ArXiv 2502.0373 (2025)

Authors:

Seoyoung Lyla Jung, IH Whittam, MJ Jarvis, CL Hale, MN Tudorache, T Yasin

The Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) Active Galactic Nuclei Catalog: The Fourth Data Release

The Astrophysical Journal: Supplement Series American Astronomical Society 276:2 (2025) 72

Authors:

Chenxu Liu, Karl Gebhardt, Erin Mentuch Cooper, Dustin Davis, Donald P Schneider, Matt J Jarvis, Daniel J Farrow, Steven L Finkelstein, Óscar A Chávez Ortiz

Abstract:

We present the active galactic nuclei (AGN) catalog from the fourth data release (HDR4) of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX). HETDEX is an untargeted spectroscopic survey. HDR4 contains 345,874 Integral Field Unit observations from 2017 January to 2023 August covering an effective area of 62.9 deg2. With no imaging preselection, our spectroscopic confirmed AGN sample includes low-luminosity AGN, narrow-line AGN, and/or red AGN down to g ∼ 25. This catalog has 15,940 AGN across the redshifts of z = 0.1 ∼ 4.6, giving a raw AGN number density of 253.4 deg−2. Among them, 10,499 (66%) have redshifts either confirmed by line pairs or matched to the Sloan Digital Sky Survey Quasar Catalog. For the remaining 5441 AGN, 2083 are single broad-line AGN candidates, while the remaining 3358 are single intermediate broad-line (full width at half-maximum, FWHM ∼1200 km s−1) AGN candidates. A total of 4060 (39%) of the 10,499 redshift-confirmed AGN have emission-line regions 3σ more extended than the image quality, which could be strong outflows blowing into the outskirts of the host galaxies or ionized intergalactic medium.

Constraints on Relativistic Jets from the Fast X-Ray Transient 210423 Using Prompt Radio Follow-up Observations

The Astrophysical Journal American Astronomical Society 980:1 (2025) 92

Authors:

Dina Ibrahimzade, R Margutti, JS Bright, P Blanchard, K Paterson, D Lin, H Sears, A Polzin, I Andreoni, G Schroeder, KD Alexander, E Berger, DL Coppejans, A Hajela, J Irwin, T Laskar, BD Metzger, JC Rastinejad, L Rhodes

Abstract:

Fast X-ray transients (FXTs) are a new observational class of phenomena with no clear physical origin. This is at least partially a consequence of limited multiwavelength follow-up of this class of transients in real time. Here we present deep optical (g- and i-band) photometry with Keck, and prompt radio observations with the Very Large Array of FXT 210423 obtained at δ t ≈ 14–36 days since the X-ray trigger. We use these multiband observations, combined with publicly available data sets, to constrain the presence and physical properties of on-axis and off-axis relativistic jets such as those that can be launched by neutron star mergers and tidal disruption events, which are among the proposed theoretical scenarios of FXTs. Considering a wide range of possible redshifts z ≤ 3.5, circumstellar medium density n = 10−6–10−1 cm−3, and isotropic-equivalent jet kinetic energy E k,iso = 1048–1055 erg, we find that we can rule out wide jets with opening angle θ j = 15° viewed within 10° off-axis. For more collimated jets (θ j = 3°) we can only rule out on-axis (θ obs = 0°) orientations. This study highlights the constraining power of prompt multiwavelength observations of FXTs discovered in real time by current (e.g., Einstein Probe) and future facilities.

Multi-band study of the flaring mode emission in the transitional millisecond pulsar PSR J1023+0038

Astronomy & Astrophysics EDP Sciences 694 (2025) l19

Authors:

MC Baglio, F Coti Zelati, AK Hughes, F Carotenuto, S Campana, D de Martino, SE Motta, A Papitto, N Rea, DM Russell, DF Torres, A Di Marco, F La Monaca, S Covino, S Giarratana, G Illiano, A Miraval Zanon, K Alabarta, P D’Avanzo, MM Messa

The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample

The Astrophysical Journal American Astronomical Society 979:2 (2025) 189

Authors:

Itai Sfaradi, Assaf Horesh, Rob Fender, Lauren Rhodes, Joe Bright, David Williams-Baldwin, Dave A Green

Abstract:

In this work, we study the circumstellar material (CSM) around massive stars, and the mass-loss rates depositing this CSM, using a large sample of radio observations of 325 core-collapse supernovae (CCSNe; only ~22% of them being detected). This sample comprises both archival data and our new observations of 99 CCSNe conducted with the AMI-LA radio array in a systematic approach devised to constrain the mass loss at different stages of stellar evolution. In the supernova (SN)–CSM interaction model, observing the peak of the radio emission of an SN provides the CSM density at a given radius (and therefore the mass-loss rate that deposited this CSM). On the other hand, limits on the radio emission, and/or on the peak of the radio emission provide a region in the CSM phase space that can be ruled out. Our analysis shows a discrepancy between the values of mass-loss rates derived from radio-detected and radio-nondetected SNe. Furthermore, we rule out mass-loss rates in the range of 2 × 10−6–10−4 M⊙ yr−1 for different epochs during the last 1000 yr before the explosion (assuming wind velocity of 10 km s−1) for the progenitors of ~80% of the Type II supernovae (SNe II) in our sample. In addition, we rule out the ranges of mass-loss rates suggested for red supergiants for ~50% of the progenitors of SNe II in our sample. We emphasize here that these results take a step forward in constraining mass loss in winds from a statistical point of view.