Long-term optical variations in Swift J1858.6–0814: evidence for ablation and comparisons to radio properties

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:4 (2025) 3421-3430

Authors:

L Rhodes, DM Russell, P Saikia, K Alabarta, J van den Eijnden, AH Knight, MC Baglio, F Lewis

X-Ray and Optical Polarization Aligned with the Radio Jet Ejecta in GX 339–4

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) L19

Authors:

G Mastroserio, B De Marco, MC Baglio, F Carotenuto, S Fabiani, TD Russell, F Capitanio, Y Cavecchi, S Motta, DM Russell, M Dovčiak, M Del Santo, K Alabarta, A Ambrifi, S Campana, P Casella, S Covino, G Illiano, E Kara, EV Lai, G Lodato, A Manca, I Mariani, A Marino

Abstract:

We present the first X-ray polarization measurements of GX 339–4. IXPE observed this source twice during its 2023–2024 outburst, once in the soft-intermediate state and again during a soft state. The observation taken during the intermediate state shows a significant (4σ) polarization degree PX = 1.3% ± 0.3% and polarization angle θX = −74° ± 7° only in the 3–8 keV band. FORS2 at the Very Large Telescope observed the source simultaneously, detecting optical polarization in the B, V, R, and I bands (between ∼0.1% and ∼0.7%), all roughly aligned with the X-ray polarization. We also detect a discrete jet knot from radio observations with the Australia Telescope Compact Array taken later in time; this knot would have been ejected from the system around the same time as the hard-to-soft X-ray state transition, and a bright radio flare occurred ∼3 months earlier. The proper motion of the jet knot provides a direct measurement of the jet orientation angle on the plane of the sky at the time of the ejection. We find that both the X-ray and optical polarization angles are aligned with the direction of the ballistic jet.

Peculiar radio-bright behaviour of the Galactic black hole transient 4U 1543−47 in the 2021–2023 outburst

Monthly Notices of the Royal Astronomical Society: Letters Oxford University Press (OUP) 538:1 (2025) l43-l49

Authors:

X Zhang, W Yu, F Carotenuto, SE Motta, R Fender, JCA Miller-Jones, TD Russell, A Bahramian, P Woudt, AK Hughes, GR Sivakoff

Cross-correlating the EMU Pilot Survey 1 with CMB lensing: Constraints on cosmology and galaxy bias with harmonic-space power spectra

Publications of the Astronomical Society of Australia (2025)

Authors:

K Tanidis, J Asorey, CS Saraf, CL Hale, B Bahr-Kalus, D Parkinson, S Camera, RP Norris, AM Hopkins, M Bilicki, N Gupta

Abstract:

We measured the harmonic-space power spectrum of galaxy clustering auto-correlation from the Evolutionary Map of the Universe Pilot Survey 1 data (EMU PS1) and its cross-correlation with the lensing convergence map of cosmic microwave background (CMB) from Planck Public Release 4 at the linear scale range from ℓ = 2 to 500. We applied two flux density cuts at 0.18 and 0.4mJy on the radio galaxies observed at 944MHz and considered two source detection algorithms. We found the auto-correlation measurements from the two algorithms at the 0.18mJy cut to deviate for ℓ ≥ 250 due to the different criteria assumed on the source detection and decided to ignore data above this scale. We report a cross-correlation detection of EMU PS1 with CMB lensing at ∼5.5σ, irrespective of flux density cut. In our theoretical modelling we considered the SKADS and T-RECS redshift distribution simulation models that yield consistent results, a linear and a non-linear matter power spectrum, and two linear galaxy bias models. That is a constant redshift-independent galaxy bias b(z) = bg and a constant amplitude galaxy bias b(z) = bg/D(z). By fixing a cosmology model and considering a non-linear matter power spectrum with SKADS, we measured a constant galaxy bias at 0.18mJy (0.4mJy) with bg = 2.32-0.33+0.41 (2.18-0.25+0.17) and a constant amplitude bias with bg = 1.72-0.21+0.31 (1.78-0.15+0.22). When σ8 is a free parameter for the same models at 0.18mJy (0.4mJy) with the constant model we found σ8 = 0.68-0.14+0.16 (0.82 ±0.10), while with the constant amplitude model we measured σ8 = 0.61-0.20+0.18 (0.78-0.09+0.11), respectively. Our results agree at 1σ with the measurements from Planck CMB and the weak lensing surveys and also show the potential of cosmology studies with future radio continuum survey data.

Supernova remnants on the outskirts of the Large Magellanic Cloud

Astronomy & Astrophysics EDP Sciences 693 (2025) l15

Authors:

Manami Sasaki, Federico Zangrandi, Miroslav Filipović, Rami ZE Alsaberi, Jordan D Collier, Frank Haberl, Ian Heywood, Patrick Kavanagh, Bärbel Koribalski, Roland Kothes, Sanja Lazarević, Pierre Maggi, Chandreyee Maitra, Sean Points, Zachary J Smeaton, Velibor Velović