Very-high-energy γ -Ray Emission from Young Massive Star Clusters in the Large Magellanic Cloud
The Astrophysical Journal Letters American Astronomical Society 970:1 (2024) L21
Abstract:
The Tarantula Nebula in the Large Magellanic Cloud is known for its high star formation activity. At its center lies the young massive star cluster R136, providing a significant amount of the energy that makes the nebula shine so brightly at many wavelengths. Recently, young massive star clusters have been suggested to also efficiently produce very high-energy cosmic rays, potentially beyond PeV energies. Here, we report the detection of very-high-energy γ-ray emission from the direction of R136 with the High Energy Stereoscopic System, achieved through a multicomponent, likelihood-based modeling of the data. This supports the hypothesis that R136 is indeed a very powerful cosmic-ray accelerator. Moreover, from the same analysis, we provide an updated measurement of the γ-ray emission from 30 Dor C, the only superbubble detected at TeV energies presently. The γ-ray luminosity above 0.5 TeV of both sources is (2–3) × 1035 erg s−1. This exceeds by more than a factor of 2 the luminosity of HESS J1646−458, which is associated with the most massive young star cluster in the Milky Way, Westerlund 1. Furthermore, the γ-ray emission from each source is extended with a significance of >3σ and a Gaussian width of about 30 pc. For 30 Dor C, a connection between the γ-ray emission and the nonthermal X-ray emission appears likely. Different interpretations of the γ-ray signal from R136 are discussed.Constraints on Short Gamma-Ray Burst Physics and Their Host Galaxies from Systematic Radio Follow-up Campaigns
(2024)
The Thousand-Pulsar-Array programme on MeerKAT XV: A comparison of the radio emission properties of slow and millisecond pulsars
(2024)
An IXPE-led X-Ray Spectropolarimetric Campaign on the Soft State of Cygnus X-1: X-Ray Polarimetric Evidence for Strong Gravitational Lensing
The Astrophysical Journal Letters American Astronomical Society 969:2 (2024) L30
Abstract:
We present the first X-ray spectropolarimetric results for Cygnus X-1 in its soft state from a campaign of five IXPE observations conducted during 2023 May–June. Companion multiwavelength data during the campaign are likewise shown. The 2–8 keV X-rays exhibit a net polarization degree PD = 1.99% ± 0.13% (68% confidence). The polarization signal is found to increase with energy across the Imaging X-ray Polarimetry Explorer’s (IXPE) 2–8 keV bandpass. The polarized X-rays exhibit an energy-independent polarization angle of PA = −25.°7 ± 1.°8 east of north (68% confidence). This is consistent with being aligned to Cyg X-1’s au-scale compact radio jet and its parsec-scale radio lobes. In comparison to earlier hard-state observations, the soft state exhibits a factor of 2 lower polarization degree but a similar trend with energy and a similar (also energy-independent) position angle. When scaling by the natural unit of the disk temperature, we find the appearance of a consistent trend line in the polarization degree between the soft and hard states. Our favored polarimetric model indicates that Cyg X-1’s spin is likely high (a * ≳ 0.96). The substantial X-ray polarization in Cyg X-1's soft state is most readily explained as resulting from a large portion of X-rays emitted from the disk returning and reflecting off the disk surface, generating a high polarization degree and a polarization direction parallel to the black hole spin axis and radio jet. In IXPE’s bandpass, the polarization signal is dominated by the returning reflection emission. This constitutes polarimetric evidence for strong gravitational lensing of X-rays close to the black hole.Constraints on short gamma-ray burst physics and their host galaxies from systematic radio follow-up campaigns
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 532:2 (2024) 2820-2831