Preface to special topic: frontiers on THz photonic devices
APL Photonics AIP Publishing 3:5 (2018) 051501-1
Abstract:
Terahertz (THz) photonic devices are now exploiting emerging materials systems, while novel device designs utilise plasmonic effects, nanophotinics, and metamaterials. The scope of this special topic highlights and reviews the recent cutting-edge THz photonic devices which have been revolutionised from the advances in the above research areas.High electron mobility and insights into temperature-dependent scattering mechanisms in InAsSb nanowires
Nano Letters American Chemical Society 18:6 (2018) 3703-3710
Abstract:
InAsSb nanowires are promising elements for thermoelectric devices, infrared photodetectors, high-speed transistors, as well as thermophotovoltaic cells. By changing the Sb alloy fraction the mid-infrared bandgap energy and thermal conductivity may be tuned for specific device applications. Using both terahertz and Raman noncontact probes, we show that Sb alloying increases the electron mobility in the nanowires by over a factor of 3 from InAs to InAs0.65Sb0.35. We also extract the temperature-dependent electron mobility via both terahertz and Raman spectroscopy, and we report the highest electron mobilities for InAs0.65Sb0.35 nanowires to date, exceeding 16,000 cm2 V–1 s–1 at 10 K.Highly crystalline methylammonium lead tribromide perovskite films for efficient photovoltaic devices
ACS Energy Letters American Chemical Society 3:6 (2018) 1233−1240
Abstract:
The rise of metal-halide perovskite solar cells has captivated the research community, promising to disrupt the current energy landscape. While a sizable percentage of the research done on this class of materials has been focused on the neat and iodide-rich perovskites, bromide-based perovskites can deliver substantially higher voltages because of their relatively wide band gaps of over 2 eV. The potential for efficient, high-voltage devices makes materials such as these incredibly attractive for multijunction photovoltaic applications. Here, we use the acetonitrile/methylamine solvent system to deposit smooth, highly crystalline films of CH3NH3PbBr3. By using choline chloride as a passivating agent for these films, we achieve photoluminescence quantum efficiencies of up to 5.5% and demonstrate charge-carrier mobilities of 17.8 cm2/(V s). Incorporating these films into photovoltaic devices, we achieve scanned power conversion efficiencies of up to 8.9%, with stabilized efficiencies of 7.6%, providing a simple route to realizing efficient, high-voltage CH3NH3PbBr3 planar-heterojunction devices.DISTINGUISHING CAP AND CORE CONTRIBUTIONS TO THE PHOTOCONDUCTIVE TERAHERTZ RESPONSE OF SINGLE GaAs BASED CORE-SHELL-CAP NANOWIRE DETECTORS
LITHUANIAN JOURNAL OF PHYSICS 58:1 (2018) 15-23
Distinguishing cap and core contributions to the photoconductive terahertz response of single GaAs based core–shell–cap nanowire detectors
Lithuanian Journal of Physics Lithuanian Academy of Sciences 58:1 (2018) 15-23