Preface to special topic: frontiers on THz photonic devices

APL Photonics AIP Publishing 3:5 (2018) 051501-1

Authors:

S Atakaramians, Michael Johnston, W Padilla, R Mendis

Abstract:

Terahertz (THz) photonic devices are now exploiting emerging materials systems, while novel device designs utilise plasmonic effects, nanophotinics, and metamaterials. The scope of this special topic highlights and reviews the recent cutting-edge THz photonic devices which have been revolutionised from the advances in the above research areas.

High electron mobility and insights into temperature-dependent scattering mechanisms in InAsSb nanowires

Nano Letters American Chemical Society 18:6 (2018) 3703-3710

Authors:

Jessica L Boland, F Amaduzzi, Sabrina Sterzl, H Potts, Laura M Herz, A Fontcuberta I Fontcuberta i Morral, Michael Johnston

Abstract:

InAsSb nanowires are promising elements for thermoelectric devices, infrared photodetectors, high-speed transistors, as well as thermophotovoltaic cells. By changing the Sb alloy fraction the mid-infrared bandgap energy and thermal conductivity may be tuned for specific device applications. Using both terahertz and Raman noncontact probes, we show that Sb alloying increases the electron mobility in the nanowires by over a factor of 3 from InAs to InAs0.65Sb0.35. We also extract the temperature-dependent electron mobility via both terahertz and Raman spectroscopy, and we report the highest electron mobilities for InAs0.65Sb0.35 nanowires to date, exceeding 16,000 cm2 V–1 s–1 at 10 K.

Highly crystalline methylammonium lead tribromide perovskite films for efficient photovoltaic devices

ACS Energy Letters American Chemical Society 3:6 (2018) 1233−1240

Authors:

Nakita Noel, Bernard Wenger, Severin Habisreutinger, Jay Patel, T Crothers, Zhiping Wang, Robin Nicholas, Michael Johnston, Laura Herz, Henry Snaith

Abstract:

The rise of metal-halide perovskite solar cells has captivated the research community, promising to disrupt the current energy landscape. While a sizable percentage of the research done on this class of materials has been focused on the neat and iodide-rich perovskites, bromide-based perovskites can deliver substantially higher voltages because of their relatively wide band gaps of over 2 eV. The potential for efficient, high-voltage devices makes materials such as these incredibly attractive for multijunction photovoltaic applications. Here, we use the acetonitrile/methylamine solvent system to deposit smooth, highly crystalline films of CH3NH3PbBr3. By using choline chloride as a passivating agent for these films, we achieve photoluminescence quantum efficiencies of up to 5.5% and demonstrate charge-carrier mobilities of 17.8 cm2/(V s). Incorporating these films into photovoltaic devices, we achieve scanned power conversion efficiencies of up to 8.9%, with stabilized efficiencies of 7.6%, providing a simple route to realizing efficient, high-voltage CH3NH3PbBr3 planar-heterojunction devices.

DISTINGUISHING CAP AND CORE CONTRIBUTIONS TO THE PHOTOCONDUCTIVE TERAHERTZ RESPONSE OF SINGLE GaAs BASED CORE-SHELL-CAP NANOWIRE DETECTORS

LITHUANIAN JOURNAL OF PHYSICS 58:1 (2018) 15-23

Authors:

K Peng, P Parkinson, L Fu, Q Gao, J Boland, Y-N Guo, N Jian, HH Tan, MB Johnston, C Jagadish

Distinguishing cap and core contributions to the photoconductive terahertz response of single GaAs based core–shell–cap nanowire detectors

Lithuanian Journal of Physics Lithuanian Academy of Sciences 58:1 (2018) 15-23

Authors:

Kun Peng, P Parkinson, L Fu, Q Gao, Jessica L Boland, Y-N Guo, N Jian, HH Tan, Michael B Johnston, C Jagadish

Abstract:

GaAs nanowires are promising candidates for advanced optoelectronic devices, despite their high surface recombination velocity and large surface-area-to-volume ratio, which renders them problematic for applications that require efficient charge collection and long charge-carrier lifetimes. Overcoating a bare GaAs nanowire core with an optimized larger-bandgap AlGaAs shell, followed by a capping layer of GaAs to prevent oxidation, has proven an effective way to passivate the nanowire surface and thereby improve electrical properties for enhanced device performance. However, it is difficult to quantify and distinguish the contributions between the nanowire core and cap layer when measuring the optoelectronic properties of a nanowire device. Here, we investigated the photoconductive terahertz (THz) response characteristics of single GaAs/AlGaAs/GaAs core–shell–cap nanowire detectors designed for THz time-domain spectroscopy. We present a detailed study of the contributions of the GaAs cap layer and GaAs core on the ultrafast optoelectronic performance of the detector. We show that both the GaAs cap and core contribute to the photoconductive signal in proportion to their relative volume in the nanowire. By increasing the cap volume ratio to above 90% of the total GaAs volume, a quasi-direct-sampling type photoconductive nanowire detector can be achieved that is highly desirable for low-noise and fast data acquisition detection.