A Million Three-body Binaries Caught by Gaia

The Astrophysical Journal American Astronomical Society 993:2 (2025) 183

Authors:

Dany Atallah, Yonadav Barry Ginat, Newlin C Weatherford

Abstract:

Gaia observations have revealed over a million stellar binary candidates within ∼1 kpc of the Sun, predominantly characterized by orbital separations >103 au and eccentricities >0.7. The prevalence of such wide, eccentric binaries has proven challenging to explain through canonical binary formation channels. However, recent advances in our understanding of three-body binary formation (3BBF)—new binary assembly by the gravitational scattering of three unbound bodies (3UB)—have shown that 3BBF in star clusters can efficiently generate wide, highly eccentric binaries. We further explore this possibility by constructing a semi-analytic model of the Galactic binary population in the solar neighborhood, originating from 3BBF in star clusters and subsequently migrating to the solar neighborhood within a Hubble time. The model relies on 3BBF scattering experiments to determine how the 3BBF rate and resulting binary properties scale with local stellar density, velocity dispersion, and physically motivated limits to 3UB encounters within a clusters’ tidal field. The Galactic star cluster population is modeled by incorporating up-to-date prescriptions for the Galaxy’s star formation history as well as the birth properties and internal evolution of its star clusters. Finally, we account for binary disruption induced by perturbations from stellar interactions before cluster dissolution and the subsequent changes and disruption of binary orbital elements induced by dynamical interactions in the Galactic field. Without any explicit fine-tuning, our model closely reproduces the total number of Gaia’s wide binaries and the separation and eccentricity distributions, suggesting that 3BBF may be an important formation channel for these enigmatic systems.

Modelling cosmic-ray transport: magnetised versus unmagnetised motion in astrophysical magnetic turbulence

Journal of Plasma Physics Cambridge University Press 91:5 (2025) E147

Authors:

Jeremiah Lübke, Patrick Reichherzer, Sophie Aerdker, Frederic Effenberger, Mike Wilbert, Horst Fichtner, Rainer Grauer

Abstract:

Cosmic-ray transport in turbulent astrophysical environments remains a multifaceted problem and, despite decades of study, the impact of complex magnetic field geometry – evident in simulations and observations – has only recently received more focussed attention. To understand how ensemble-averaged transport behaviour emerges from the intricate interactions between cosmic rays and structured magnetic turbulence, we run test-particle experiments in snapshots of a strongly turbulent magnetohydrodynamics simulation. We characterise particle–turbulence interactions via the gyro radii of particles and their experienced field-line curvatures, which reveals two distinct transport modes: magnetised motion, where particles are tightly bound to strong coherent flux tubes and undergo large-scale mirroring; and unmagnetised motion, characterised by chaotic scattering through weak and highly tangled regions of the magnetic field. We formulate an effective stochastic process for each mode: compound subdiffusion with long mean free paths for magnetised motion, and a Langevin process with short mean free paths for unmagnetised motion. A combined stochastic walker that alternates between these two modes accurately reproduces the mean squared displacements observed in the test-particle data. Our results emphasise the critical role of coherent magnetic structures in comprehensively understanding cosmic-ray transport and lay a foundation for developing a theory of geometry-mediated transport.

Large-scale-structure observables in general relativity validated at second order

Journal of Cosmology and Astroparticle Physics IOP Publishing 2025:10 (2025) 105

Authors:

Antoine Villey, Yonadav Barry Ginat, Vincent Desjacques, Donghui Jeong, Fabian Schmidt

Abstract:

We present a second-order calculation of relativistic large-scale-structure observables in cosmological perturbation theory, specifically the “cosmic rulers and clock”, which are the building-blocks of any other large-scale-structure observable, including galaxy number counts, on large scales. We calculate the scalar rulers (longitudinal perturbation and magnification) and the cosmic clock to second order, using a fully non-linear covariant definition of the observables. We validate our formulæ on three non-trivial space-time metrics: two of them are null tests on metrics which are obtained by applying a gauge transformation to the background space-time, while the third is the “separate universe” curved background, for which we can also compute the observables exactly. We then illustrate the results by evaluating the second-order observables in a simplified symmetric setup. On large scales, they are suppressed over the linear contributions by ∼10-4, while they become comparable to the linear contributions on mildly non-linear scales. The results of this paper form a significant (and the most complicated) part of the relativistic galaxy number density at second order.

Hydrodynamic simulations of black hole evolution in AGN discs II: inclination damping for partially embedded satellites

Monthly Notices of the Royal Astronomical Society Oxford University Press 543:4 (2025) 3768-3782

Authors:

Henry Whitehead, Connar Rowan, Bence Kocsis

Abstract:

We investigate the evolution of black holes on orbits with small inclinations () to the gaseous discs of active galactic nuclei (AGNs). We perform 3D adiabatic hydrodynamic simulations within a shearing frame, studying the damping of inclination by black hole-gas gravitation. We find that for objects with , where is the disc aspect ratio, the inclination lost per mid-plane crossing is proportional to the inclination preceding the crossing, resulting in a net exponential decay in inclination. For objects with , damping efficiency decreases for higher inclinations. We consider a variety of different AGN environments, finding that damping is stronger for systems with a higher ambient Hill mass: the initial gas mass within the BH sphere of influence. We provide a fitting formula for the inclination changes as a function of Hill mass. We find reasonable agreement between the damping driven by gas gravity in the simulations and the damping driven by accretion under a Hill-limited Bondi–Hoyle–Lyttleton prescription. We find that gas dynamical friction consistently overestimates the strength of damping, especially for lower inclination systems, by at least an order of magnitude. For regions in the AGN disc where coplanar binary black hole formation by gas dissipation is efficient, we find that the simulated damping time-scales are especially short with . We conclude that as the time-scales for inclination damping are shorter than the expected interaction time between isolated black holes, the vast majority of binaries formed from gas capture should form from components with negligible inclination to the AGN disc.

Tertiary tides with eccentric orbits

Monthly Notices of the Royal Astronomical Society 543:1 (2025) 445-455

Authors:

Y Gao, T Boekholt, D Panda, T Akiba, S Toonen

Abstract:

Within hierarchical triple stellar systems, there exists a tidal process unique to them, known as tertiary tides. In this process, the tidal deformation of a tertiary in a hierarchical triple drains energy from the inner binary, causing the inner binary’s orbit to shrink. Previous work has uncovered the rate at which tertiary tides drain energy from inner binaries, as a function of orbital and tidal parameters, for hierarchical triples in which the orbits are all circular and coplanar. However, not all hierarchical triples have orbits which are circular and coplanar, which requires an understanding of what happens when this condition is relaxed. In this paper, we study how eccentricities affect tertiary tides, and their influence on the subsequent dynamical evolution of the host hierarchical triple. We find that eccentricities in the outer orbit undergo tidal circularization as quickly as binary tidal synchronization, and are therefore trivial, but that eccentricities in the inner binary completely change the behaviour of tertiary tides, draining energy from the outer orbit as well as the inner orbit. As with the circular orbit case, tertiary tides become significant when the tertiary is large enough to come close to filling its Roche Lobe, and dominate tidal evolution when interactions between the inner binary pair are weak. Empirical equations that approximate this behaviour are provided for ease of implementing this process in other stellar evolution codes, and the implications of these results are discussed.