Gas Assisted Binary Black Hole Formation in AGN Discs

ArXiv 2309.11561 (2023)

Authors:

Henry Whitehead, Connar Rowan, Tjarda Boekholt, Bence Kocsis

Resonant dynamical friction around a supermassive black hole: analytical description

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 525:3 (2023) 4202-4218

Authors:

Yonadav Barry Ginat, Taras Panamarev, Bence Kocsis, Hagai B Perets

Search for Correlations of High-energy Neutrinos Detected in IceCube with Radio-bright AGN and Gamma-Ray Emission from Blazars

The Astrophysical Journal American Astronomical Society 954:1 (2023) 75

Authors:

R Abbasi, M Ackermann, J Adams, SK Agarwalla, JA Aguilar, M Ahlers, JM Alameddine, NM Amin, K Andeen, G Anton, C Argüelles, Y Ashida, S Athanasiadou, SN Axani, X Bai, A Balagopal V., M Baricevic, SW Barwick, V Basu, R Bay, JJ Beatty, K-H Becker, J Becker Tjus, J Beise, C Bellenghi, C Benning, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, E Blaufuss, S Blot, F Bontempo, JY Book, C Boscolo Meneguolo, S Böser, O Botner, J Böttcher, E Bourbeau, J Braun, B Brinson, J Brostean-Kaiser, RT Burley, RS Busse, D Butterfield, MA Campana, K Carloni, EG Carnie-Bronca, S Chattopadhyay, N Chau, C Chen, Z Chen, D Chirkin, S Choi, BA Clark, L Classen, A Coleman, GH Collin, A Connolly, JM Conrad, P Coppin, P Correa, S Countryman, DF Cowen, P Dave, C De Clercq, JJ DeLaunay, D Delgado, H Dembinski, S Deng, K Deoskar, A Desai, P Desiati, KD de Vries, G de Wasseige, T DeYoung, A Diaz, JC Díaz-Vélez, M Dittmer, A Domi, H Dujmovic, MA DuVernois, T Ehrhardt, P Eller, S El Mentawi, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, K Fang, K Farrag, AR Fazely, A Fedynitch, N Feigl, S Fiedlschuster, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Fürst, TK Gaisser, J Gallagher, E Ganster, A Garcia, L Gerhardt, A Ghadimi, C Glaser, T Glauch, T Glüsenkamp, N Goehlke, JG Gonzalez, S Goswami, D Grant, SJ Gray, O Gries, S Griffin, S Griswold, C Günther, P Gutjahr, C Haack, A Hallgren, R Halliday, L Halve, F Halzen, H Hamdaoui, M Ha Minh, K Hanson, J Hardin, AA Harnisch, P Hatch, A Haungs, K Helbing, J Hellrung, F Henningsen, L Heuermann, N Heyer, S Hickford, A Hidvegi, C Hill, GC Hill, KD Hoffman, S Hori, K Hoshina, W Hou, T Huber, K Hultqvist, M Hünnefeld, R Hussain, K Hymon, S In, A Ishihara, M Jacquart, O Janik, M Jansson, GS Japaridze, K Jayakumar, M Jeong, M Jin, BJP Jones, D Kang, W Kang, X Kang, A Kappes, D Kappesser, L Kardum, T Karg, M Karl, A Karle, U Katz, M Kauer, JL Kelley, A Khatee Zathul, A Kheirandish, J Kiryluk, SR Klein, A Kochocki, R Koirala, H Kolanoski, T Kontrimas, L Köpke, C Kopper, DJ Koskinen, P Koundal, M Kovacevich, M Kowalski, T Kozynets, K Kruiswijk, E Krupczak, A Kumar, E Kun, N Kurahashi, N Lad, C Lagunas Gualda, M Lamoureux, MJ Larson, S Latseva, F Lauber, JP Lazar, JW Lee, K Leonard DeHolton, A Leszczyńska, M Lincetto, QR Liu, M Liubarska, E Lohfink, C Love, CJ Lozano Mariscal, L Lu, F Lucarelli, A Ludwig, W Luszczak, Y Lyu, J Madsen, KBM Mahn, Y Makino, E Manao, S Mancina, W Marie Sainte, IC Mariş, S Marka, Z Marka, M Marsee, I Martinez-Soler, R Maruyama, F Mayhew, T McElroy, F McNally, JV Mead, K Meagher, S Mechbal, A Medina, M Meier, Y Merckx, L Merten, J Micallef, T Montaruli, RW Moore, Y Morii, R Morse, M Moulai, T Mukherjee, R Naab, R Nagai, M Nakos, U Naumann, J Necker, M Neumann, H Niederhausen, MU Nisa, A Noell, SC Nowicki, A Obertacke Pollmann, V O’Dell, M Oehler, B Oeyen, A Olivas, R Orsoe, J Osborn, E O’Sullivan, H Pandya, N Park, GK Parker, EN Paudel, L Paul, C Pérez de los Heros, J Peterson, S Philippen, S Pieper, A Pizzuto, M Plum, A Pontén, Y Popovych, M Prado Rodriguez, B Pries, R Procter-Murphy, GT Przybylski, J Rack-Helleis, K Rawlins, Z Rechav, A Rehman, P Reichherzer, G Renzi, E Resconi, S Reusch, W Rhode, M Richman, B Riedel, A Rifaie, EJ Roberts, S Robertson, S Rodan, G Roellinghoff, M Rongen, C Rott, T Ruhe, L Ruohan, D Ryckbosch, I Safa, J Saffer, D Salazar-Gallegos, P Sampathkumar, SE Sanchez Herrera, A Sandrock, M Santander, S Sarkar, S Sarkar, J Savelberg, P Savina, M Schaufel, H Schieler, S Schindler, L Schlickmann, B Schlüter, F Schlüter, T Schmidt, J Schneider, FG Schröder, L Schumacher, G Schwefer, S Sclafani, D Seckel, M Seikh, S Seunarine, R Shah, A Sharma, S Shefali, N Shimizu, M Silva, B Skrzypek, B Smithers, R Snihur, J Soedingrekso, A Søgaard, D Soldin, P Soldin, G Sommani, C Spannfellner, GM Spiczak, C Spiering, M Stamatikos, T Stanev, T Stezelberger, T Stürwald, T Stuttard, GW Sullivan, I Taboada, S Ter-Antonyan, M Thiesmeyer, WG Thompson, J Thwaites, S Tilav, K Tollefson, C Tönnis, S Toscano, D Tosi, A Trettin, CF Tung, R Turcotte, JP Twagirayezu, B Ty, MA Unland Elorrieta, AK Upadhyay, K Upshaw, N Valtonen-Mattila, J Vandenbroucke, N van Eijndhoven, D Vannerom, J van Santen, J Vara, J Veitch-Michaelis, M Venugopal, M Vereecken, S Verpoest, D Veske, C Walck, TB Watson, C Weaver, P Weigel, A Weindl, J Weldert, C Wendt, J Werthebach, M Weyrauch, N Whitehorn, CH Wiebusch, N Willey, DR Williams, A Wolf, M Wolf, G Wrede, XW Xu, JP Yanez, E Yildizci, S Yoshida, R Young, F Yu, S Yu, T Yuan, Z Zhang, P Zhelnin, IceCube Collaboration

Scale invariance and critical balance in electrostatic drift-kinetic turbulence

Journal of Plasma Physics Cambridge University Press 89:4 (2023) 905890406

Authors:

Toby Adkins, Plamen G Ivanov, Alexander A Schekochihin

Abstract:

The equations of electrostatic drift kinetics are observed to possess a symmetry associated with their intrinsic scale invariance. Under the assumptions of spatial periodicity, stationarity, and locality, this symmetry implies a particular scaling of the turbulent heat flux with the system's parallel size, from which its scaling with the equilibrium temperature gradient can be deduced under some additional assumptions. This macroscopic transport prediction is then confirmed numerically for a reduced model of electron-temperature-gradient-driven turbulence in slab geometry. The system realises this scaling through a turbulent cascade from large to small perpendicular spatial scales. The route of this cascade through wavenumber space (i.e. the relationship between parallel and perpendicular scales in the inertial range) is shown to be determined by a balance between nonlinear-decorrelation and parallel-dissipation timescales. This type of ‘critically balanced’ cascade, which maintains a constant energy flux despite the presence of parallel dissipation throughout the inertial range (as well as order-unity dissipative losses at the outer scale) is expected to be a generic feature of plasma turbulence. The outer scale of the turbulence, on which the turbulent heat flux depends, is determined by the breaking of drift-kinetic scale invariance due to the existence of large-scale parallel inhomogeneity (the parallel system size).

On the energetics of a tidally oscillating convective flow

Monthly Notices of the Royal Astronomical Society Oxford University Press 525:1 (2023) 508-526

Abstract:

This paper examines the energetics of a convective flow subject to an oscillation with a period $t_{\rm osc}$ much smaller than the convective time-scale $t_{\rm conv}$, allowing for compressibility and uniform rotation. We show that the energy of the oscillation is exchanged with the kinetic energy of the convective flow at a rate $D_R$ that couples the Reynolds stress of the oscillation with the convective velocity gradient. For the equilibrium tide and inertial waves, this is the only energy exchange term, whereas for p modes there are also exchanges with the potential and internal energy of the convective flow. Locally, $\left| D_R \right| \sim u^{\prime 2} / t_{\rm conv}$, where $u^{\prime}$ is the oscillating velocity. If $t_{\rm conv} \ll t_{\rm osc}$ and assuming mixing length theory, $\left| D_R \right|$ is $\left( \lambda_{\rm conv} / \lambda_{\rm osc} \right)^2$ smaller, where $\lambda_{\rm conv}$ and $\lambda_{\rm osc}$ are the characteristic scales of convection and the oscillation. Assuming local dissipation, we show that the equilibrium tide lags behind the tidal potential by a phase $\delta(r) \sim r \omega_{\rm osc} / \left( g(r) t_{\rm conv}(r) \right)$, where g is the gravitational acceleration. The equilibrium tide can be described locally as a harmonic oscillator with natural frequency $\left( g/r \right)^{1/2}$ and subject to a damping force $-u^{\prime}/t_{\rm conv}$. Although $\delta(r)$ varies by orders of magnitude through the flow, it is possible to define an average phase shift $\overline{\delta }$ which is in good agreement with observations for Jupiter and some of the moons of Saturn. Finally, $1 / \overline{\delta }$ is shown to be equal to the standard tidal dissipation factor.