Gravitational turbulence: The small-scale limit of the cold-dark-matter power spectrum
Physical Review D American Physical Society (APS) 112:6 (2025) 063501
Abstract:
The matter power spectrum, , is one of the fundamental quantities in the study of large-scale structure in cosmology. Here, we study its small-scale asymptotic limit, and show that for cold dark matter in spatial dimensions, has a universal asymptotic scaling with the wave number , for , where denotes the length scale at which nonlinearities in gravitational interactions become important. We propose a theoretical explanation for this scaling, based on a nonperturbative analysis of the system’s phase-space structure. Gravitational collapse is shown to drive a turbulent phase-space flow of the quadratic Casimir invariant, where the linear and nonlinear time scales are balanced, and this balance dictates the dependence of the power spectrum. A parallel is drawn to Batchelor turbulence in hydrodynamics, where large scales mix smaller ones via tidal interactions. The scaling is also derived by expressing as a phase-space integral in the framework of kinetic field theory, which is analyzed by the saddle-point method; the dominant critical points of this integral are precisely those where the time scales are balanced. The coldness of the dark-matter distribution function—its nonvanishing only on a -dimensional submanifold of phase space—underpins both approaches. The theory is accompanied by 1D Vlasov-Poisson simulations, which confirm it.Suppression of pair beam instabilities in a laboratory analogue of blazar pair cascades
(2025)
Hydrodynamic simulations of black hole evolution in AGN discs – I. Orbital alignment of highly inclined satellites
Monthly Notices of the Royal Astronomical Society Oxford University Press 543:1 (2025) 132-145
Abstract:
The frequency of compact object interactions in AGN discs is naturally tied to the number of objects embedded within it. We investigate the evolution of black holes in the nuclear stellar cluster on inclined orbits to the AGN disc by performing adiabatic hydrodynamical simulations of isolated black hole disc crossings over a range of disc densities and inclinations . We find radiation dominates the pressure in the wake that forms around the BH across the full inclination and disc density range. We identify no well defined steady state wake morphology due to the thin geometry of the disc and the vertical exponential density drop off, where the wake morphology depends on the vertical depth of the transit within the disc. The inclination damping relative the pre-transit inclination behaves as a power law in and the ambient Hill mass as . The drag on the BH is dominated by the gravity of the wake for the majority of our inclination range until accretion effects become comparable at , where is the disc aspect ratio. At low inclinations () the wake morphology becomes more spherical, leading to a regime change in the inclination damping behaviour. Our results suggest that the inclination damping time-scale is shorter than expected from only episodic Bondi–Hoyle–Lyttelton accretion events during each transit, implying inclined objects may be captured by the AGN disc earlier in its lifetime than previously thought.Efficient ion re-acceleration in laboratory-produced interpenetrating collisionless shocks
(2025)
3D adiabatic simulations of binary black hole formation in AGN discs
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1033-1055