3D adiabatic simulations of binary black hole formation in AGN discs
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 1033-1055
Abstract:
We investigate close encounters between initially unbound black holes (BHs) in the gaseous discs of active galactic nuclei (AGNs), performing the first 3D non-isothermal hydrodynamical simulations of gas-assisted binary BH formation. We discuss a suite of 135 simulations, considering nine AGN disc environments and 15 BH impact parameters. We find that the gas distribution within the Hill sphere about an isolated embedded BH is akin to a spherically symmetric star with a low-mass convective envelope and a BH core, with large convective currents driving strong outflows away from the mid-plane. We find that Coriolis force acting on the outflow results in winds, analogous to cyclones, that counter-rotate with respect to the mid-plane flow within the Hill sphere. We confirm the existence of strong thermal blasts due to minidisc collisions during BH close encounters, as predicted in our previous 2D studies. We document binary formation across a wide range of environments, finding formation likelihood is increased when the gas mass in the Hill sphere is large, allowing for easier binary formation in the outer AGN disc. We provide a comprehensive overview of the supermassive black hole’s role in binary formation, investigating how binary formation in intermediate density environments is biased towards certain binary orientations. We offer two models for predicting dissipation by gas during close encounters, as a function of the ambient Hill mass alone, or with the periapsis depth. We use these models to motivate a prescription for binary formation likelihood that can be readily applied to Monte Carlo simulations of AGN evolution.Stripping losses measurements at ELISE during hydrogen and deuterium operation
Journal of Instrumentation IOP Publishing 20:08 (2025) c08018
Abstract:
The ITER Neutral Beam Injection (NBI) system is based on negative ions, produced in an RF-driven plasma source. The ITER NBI lines must deliver a current density of 230 A/m2 of negative hydrogen ions, accelerated to 870 keV, or a current density of 200 A/m2 of negative deuterium ions accelerated to 1 MeV. NBI systems, based on negative ions, are compromised by a process known as stripping losses, in which negative ions are neutralized in the grid system before achieving full energy. For a source filling pressure of p fill = 0.3 Pa, 29% of the extracted H -(D -) ions are predicted to be lost by stripping in the ITER full-scale NBIs system (7 grid acceleration system). To compensate for these stripping losses, a larger amount of negative ions has to be extracted from the source (329 A/m2 in hydrogen and 286 A/m2 in deuterium). The ELISE test facility is based on a 1/2-size ITER source. It extracts H -(D -) ions using a 3-grid acceleration system, with a maximum extraction voltage of 10 kV and acceleration voltage of 50 kV is achieved. In a 3-grid acceleration system, 10% of stripping losses is predicted for both isotopes. This contribution focuses on experimental measurements of stripping losses at ELISE. Experimentally, stripping losses are monitored using Beam Emission Spectroscopy (BES), which analyzes the Doppler-shifted spectrum of the Balmer Hα (Dα ). To not underestimate the number of stripping losses the full area between the unshifted Peak background (H 2 dissociation and excitation) and the Doppler Peak (fully-accelerated beam particles excitation) needs to be considered. However, the influence of BES background and signal-to-noise ratio (SNR) can affect the calculation of stripping losses, mainly for hydrogen measurements at low filling pressures (< 0.4 Pa). To accurately predict the value of the stripping losses, only signals with high-enought SNR should be used. When this effect is considered, no differences between hydrogen and deuterium are found in terms of stripping losses. For a filling pressure of 0.3 Pa, a stripping fraction of 6.0±0.8% was found for hydrogen and 6.2±0.7% for deuterium. A systematic comparison of the stripping losses between hydrogen and deuterium under various experimental conditions is presented.The plunging region of a thin accretion disc around a Schwarzschild black hole
Monthly Notices of the Royal Astronomical Society Oxford University Press 542:1 (2025) 377-390
Abstract:
A set of analytic solutions for the plunging region thermodynamics has been developed recently under the assumption that the fluid undergoes a gravity-dominated geodesic plunge into the black hole. We test this model against a dedicated 3D global general relativistic magnetohydrodynamics simulation of a thin accretion disc around a Schwarzschild black hole using the code athenak . Provided that we include the effects of non-adiabatic heating (plausibly from grid-scale magnetic dissipation), we find excellent agreement between the analytic model and the simulated quantities. These results are particularly important for existing and future electromagnetic black hole spin measurements, many of which do not include the plunging fluid in their emission modelling. This exclusion typically stems from the assumption of a zero-stress boundary condition at the innermost stable circular orbit (ISCO), forcing all thermodynamic quantities to vanish. Instead, we find a non-zero drop in the angular momentum over the plunging region, which is consistent with both prior simulations and observations. We demonstrate that this stress is small enough for the dynamics of the fluid in the plunging region to be well-described by geodesic trajectories, yet large enough to cause measurable dissipation near to the ISCO – keeping thermodynamic quantities from vanishing. In the plunging region, constant -disc models are a physically inappropriate framework.Angular-momentum pairs in spherical systems: applications to the Galactic centre
(2025)