Testing the binary hypothesis: pulsar timing constraints on supermassive black hole binary candidates

(2017)

Authors:

A Sesana, Z Haiman, B Kocsis, LZ Kelley

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

Physics of Plasmas AIP Publishing 24:4 (2017) 041404

Authors:

P Tzeferacos, A Rigby, A Bott, Anthony Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, N Flocke, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, K Weide, TG White, B Reville, F Miniati, AA Schekochihin, DH Froula, G Gregori, DQ Lamb

Abstract:

The universe is permeated by magnetic fields, with strengths ranging from a femtogauss in the voids between the filaments of galaxy clusters to several teragauss in black holes and neutron stars. The standard model behind cosmological magnetic fields is the nonlinear amplification of seed fields via turbulent dynamo to the values observed. We have conceived experiments that aim to demonstrate and study the turbulent dynamo mechanism in the laboratory. Here, we describe the design of these experiments through simulation campaigns using FLASH, a highly capable radiation magnetohydrodynamics code that we have developed, and large-scale three-dimensional simulations on the Mira supercomputer at the Argonne National Laboratory. The simulation results indicate that the experimental platform may be capable of reaching a turbulent plasma state and determining the dynamo amplification. We validate and compare our numerical results with a small subset of experimental data using synthetic diagnostics.

Collisionality scaling of the electron heat flux in ETG turbulence

Plasma Physics and Controlled Fusion IOP Publishing 59:5 (2017) 1-25

Authors:

GJ Colyer, AA Schekochihin, FI Parra, CM Roach, MA Barnes, Y-C Ghim, W Dorland

Abstract:

In electrostatic simulations of MAST plasma at electron-gyroradius scales, using the local flux-tube gyrokinetic code GS2 with adiabatic ions, we find that the long-time saturated electron heat flux (the level most relevant to energy transport) decreases as the electron collisionality decreases. At early simulation times, the heat flux "quasi-saturates" without any strong dependence on collisionality, and with the turbulence dominated by streamer-like radially elongated structures. However, the zonal fluctuation component continues to grow slowly until much later times, eventually leading to a new saturated state dominated by zonal modes and with the heat flux proportional to the collision rate, in approximate agreement with the experimentally observed collisionality scaling of the energy confinement in MAST. We outline an explanation of this effect based on a model of ETG turbulence dominated by zonal-nonzonal interactions and on an analytically derived scaling of the zonal-mode damping rate with the electron-ion collisionality. Improved energy confinement with decreasing collisionality is favourable towards the performance of future, hotter devices.

Optimized up-down asymmetry to drive fast intrinsic rotation in tokamaks

(2017)

Authors:

Justin Ball, Felix I Parra, Matt Landreman, Michael Barnes

The selection function of the RAVE survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:3 (2017) 3368-3380

Authors:

J Wojno, G Kordopatis, T Piffl, James J Binney, M Steinmetz, G Matijevič, J Bland-Hawthorn, S Sharma, P McMillan, F Watson, W Reid, A Kunder, H Enke, EK Grebel, G Seabroke, RFG Wyse, T Zwitter, O Bienaymé, KC Freeman, BK Gibson, G Gilmore, A Helmi, U Munari, JF Navarro, QA Parker

Abstract:

We characterize the selection function of RAVE using 2MASS as our underlying population, which we assume represents all stars which could have potentially been observed. We evaluate the completeness fraction as a function of position, magnitude, and color in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using Galaxia with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between $4000 \rm K < T_{\rm eff} < 8000 \rm K$ and $0.5 < \rm{log}\,g < 5.0$, RAVE is kinematically and chemically unbiased with respect to expectations from Galaxia.