The selection function of the RAVE survey

Monthly Notices of the Royal Astronomical Society Oxford University Press 468:3 (2017) 3368-3380

Authors:

J Wojno, G Kordopatis, T Piffl, James J Binney, M Steinmetz, G Matijevič, J Bland-Hawthorn, S Sharma, P McMillan, F Watson, W Reid, A Kunder, H Enke, EK Grebel, G Seabroke, RFG Wyse, T Zwitter, O Bienaymé, KC Freeman, BK Gibson, G Gilmore, A Helmi, U Munari, JF Navarro, QA Parker

Abstract:

We characterize the selection function of RAVE using 2MASS as our underlying population, which we assume represents all stars which could have potentially been observed. We evaluate the completeness fraction as a function of position, magnitude, and color in two ways: first, on a field-by-field basis, and second, in equal-size areas on the sky. Then, we consider the effect of the RAVE stellar parameter pipeline on the final resulting catalogue, which in principle limits the parameter space over which our selection function is valid. Our final selection function is the product of the completeness fraction and the selection function of the pipeline. We then test if the application of the selection function introduces biases in the derived parameters. To do this, we compare a parent mock catalogue generated using Galaxia with a mock-RAVE catalogue where the selection function of RAVE has been applied. We conclude that for stars brighter than I = 12, between $4000 \rm K < T_{\rm eff} < 8000 \rm K$ and $0.5 < \rm{log}\,g < 5.0$, RAVE is kinematically and chemically unbiased with respect to expectations from Galaxia.

On stellar-mass black hole mergers in AGN disks detectable with LIGO

(2017)

Authors:

B McKernan, KES Ford, J Bellovary, NWC Leigh, Z Haiman, B Kocsis, W Lyra, M-M MacLow, B Metzger, M O'Dowd, S Endlich, DJ Rosen

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

(2017)

Authors:

P Tzeferacos, A Rigby, A Bott, AR Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, TG White, B Reville, F Miniati, AA Schekochihin, DQ Lamb, DH Froula, G Gregori

Numerical modeling of laser-driven experiments aiming to demonstrate magnetic field amplification via turbulent dynamo

(2017)

Authors:

P Tzeferacos, A Rigby, A Bott, AR Bell, R Bingham, A Casner, F Cattaneo, EM Churazov, J Emig, N Flocke, F Fiuza, CB Forest, J Foster, C Graziani, J Katz, M Koenig, C-K Li, J Meinecke, R Petrasso, H-S Park, BA Remington, JS Ross, D Ryu, D Ryutov, K Weide, TG White, B Reville, F Miniati, AA Schekochihin, DH Froula, G Gregori, DQ Lamb

The secular evolution of discrete quasi-Keplerian systems. I. Kinetic theory of stellar clusters near black holes

Astronomy and Astrophysics EDP Sciences 598 (2017) A71

Authors:

J-B Fouvry, C Pichon, John Magorrian

Abstract:

We derive the kinetic equation that describes the secular evolution of a large set of particles orbiting a dominant massive object, such as stars bound to a supermassive black hole or a proto-planetary debris disc encircling a star. Because the particles move in a quasi-Keplerian potential, their orbits can be approximated by ellipses whose orientations remain fixed over many dynamical times. The kinetic equation is obtained by simply averaging the BBGKY equations over the fast angle that describes motion along these ellipses. This so-called Balescu-Lenard equation describes self-consistently the long-term evolution of the distribution of quasi-Keplerian orbits around the central object: it models the diffusion and drift of their actions, induced through their mutual resonant interaction. Hence, it is the master equation that describes the secular effects of resonant relaxation. We show how it captures the phenonema of mass segregation and of the relativistic Schwarzschild barrier recently discovered in N-body simulations.