Turbulent momentum transport due to the beating between different tokamak flux surface shaping effects

Plasma Physics and Controlled Fusion IOP Publishing 59:2 (2017) 024007

Authors:

Justin Ball, Felix I Parra Diaz

Abstract:

Introducing up–down asymmetry into the tokamak magnetic equilibria appears to be a feasible method to drive fast intrinsic toroidal rotation in future large devices. In this paper we investigate how the intrinsic momentum transport generated by up–down asymmetric shaping scales with the mode number of the shaping effects. Making use the gyrokinetic tilting symmetry (Ball et al 2016 Plasma Phys. Control. Fusion 58 045023), we study the effect of envelopes created by the beating of different high-order shaping effects. This reveals that the presence of an envelope can change the scaling of the momentum flux from exponentially small in the limit of large shaping mode number to just polynomially small. This enhancement of the momentum transport requires the envelope to be both up–down asymmetric and have a spatial scale on the order of the minor radius.

DETECTING TRIPLE SYSTEMS WITH GRAVITATIONAL WAVE OBSERVATIONS

ASTROPHYSICAL JOURNAL American Astronomical Society 834:2 (2017) ARTN 200

Authors:

Yohai Meiron, Bence Kocsis, Abraham Loeb

Abstract:

The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to: (1) the varying path length along the line of sight during the orbit around the center of mass; (2) relativistic beaming, Doppler, and gravitational redshift; (3) the variation of the light-travel time in the gravitational field of the triple companion; and (4) secular variations of the orbital elements. We find that the prospects for detecting a triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at a signal-to-noise ratio of 8, if it is within 0.4 R⊙ distance from the binary and the system is within a distance of 100 Mpc. Stellar mass (supermassive) black hole perturbers may be detected at a factor 5 × (103×) larger separations. Such pertubers in orbit around a merging binary emit GWs at frequencies above 1 mHz detectable by the Laser Interferometer Space Antenna in coincidence.

Isotropic-Nematic Phase Transitions in Gravitational Systems

(2017)

Authors:

Zacharias Roupas, Bence Kocsis, Scott Tremaine

Gyrokinetic treatment of a grazing angle magnetic field

Plasma Physics and Controlled Fusion Institute of Physics 59 (2017) 025015

Authors:

Alessandro Geraldini, Felix I Parra Diaz, Fulvio Militello

Abstract:

>We develop a gyrokinetic treatment for ions in the magnetic presheath, close to the plasma-wall boundary. We focus on magnetic presheaths with a small magnetic field to wall angle, α ⟪ 1. Characteristic lengths perpendicular to the wall in such a magnetic presheath scale with the typical ion Larmor orbit size, pi. The smallest scale length associated with variations parallel to the wall is taken to be across the magnetic field, and ordered l = ρi/δ, where δ ⟪ 1 is assumed. The scale lengths along the magnetic field line are assumed so long that variations associated with this direction are neglected. These orderings are consistent with what we expect close to the divertor target of a tokamak. We allow for a strong electric field E in the direction normal to the electron repelling wall, with strong variation in the same direction. The large change of the electric field over an ion Larmor radius distorts the orbit so that it is not circular. We solve for the lowest order orbits by identifying coordinates, which consist of constants of integration, an adiabatic invariant and a gyrophase, associated with periodic ion motion in the system with α = δ = 0. By using these new coordinates as variables in the limit α ~ δ ⟪ 1, we obtain a generalized ion gyrokinetic equation. We find another quantity that is conserved to first order and use this to simplify the gyrokinetic equation, solving it in the case of a collisionless magnetic presheath. Assuming a Boltzmann response for the electrons, a form of the quasineutrality equation that exploits the change of variables is derived. The gyrokinetic and quasineutrality equations give the ion distribution function and electrostatic potential in the magnetic presheath if the entrance boundary condition is specified.

Implementation of multiple species collision operator in gyrokinetic code GS2

44th EPS Conference on Plasma Physics, EPS 2017 (2017)

Authors:

A Mauriya, M Barnes, MFF Nave, F Parra