Moderation of neoclassical impurity accumulation in high temperature plasmas of helical devices
Nuclear Fusion IOP Publishing 57:1 (2016) 016016
Abstract:
Achieving impurity and helium ash control is a crucial issue in the path towards fusion-grade magnetic confinement devices, and this is particularly the case of helical reactors, whose low-collisionality ion-root operation scenarios usually display a negative radial electric field which is expected to cause inwards impurity pinch. In this work we discuss, based on experimental measurements and standard predictions of neoclassical theory, how plasmas of very low ion collisionality, similar to those observed in the impurity hole of the large helical device (Yoshinuma et al and The LHD Experimental Group 2009 Nucl. Fusion 49 062002, Ida et al and The LHD Experimental Group 2009 Phys. Plasmas 16 056111 and Yokoyama et al and LHD Experimental Group 2002 Nucl. Fusion 42 143), can be an exception to this general rule, and how a negative radial electric field can coexist with an outward impurity flux. This interpretation is supported by comparison with documented discharges available in the International Stellarator-Heliotron Profile Database, and it can be extrapolated to show that achievement of high ion temperature in the core of helical devices is not fundamentally incompatible with low core impurity content.A low upper mass limit for the central black hole in the late-type galaxy NGC 4414
(2016)
The influence of mergers and ram-pressure stripping on black hole–bulge correlations
Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 461:4 (2016) 3533-3541
On the energy dissipation rate at the inner edge of circumbinary discs
(2016)
On the formation of planetary systems in photoevaporating transition discs
Monthly Notices of the Royal Astronomical Society Oxford University Press 464:1 (2016)