The Dawning of the Stream of Aquarius in RAVE
ArXiv 1012.2127 (2010)
Abstract:
We identify a new, nearby (0.5 < d < 10 kpc) stream in data from the RAdial Velocity Experiment (RAVE). As the majority of stars in the stream lie in the constellation of Aquarius we name it the Aquarius Stream. We identify 15 members of the stream lying between 30 < l < 75 and -70< b <-50, with heliocentric line-of-sight velocities V_los~-200 km/s. The members are outliers in the radial velocity distribution, and the overdensity is statistically significant when compared to mock samples created with both the Besan\c{c}on Galaxy model and newly-developed code Galaxia. The metallicity distribution function and isochrone fit in the log g - T_eff plane suggest the stream consists of a 10 Gyr old population with [m/H]~-1.0. We explore relations to other streams and substructures, finding the stream cannot be identified with known structures: it is a new, nearby substructure in the Galaxy's halo. Using a simple dynamical model of a dissolving satellite galaxy we account for the localization of the stream. We find that the stream is dynamically young and therefore likely the debris of a recently disrupted dwarf galaxy or globular cluster. The Aquarius stream is thus a specimen of ongoing hierarchical Galaxy formation, rare for being right in the solar suburb.Comment on "nonlinear gyrokinetic theory with polarization drift" [Phys. Plasmas 17, 082304 (2010)]
Physics of Plasmas 17:12 (2010)
Abstract:
In this comment, we show that by using the discrete particle distribution function the changes of the phase-space volume of gyrocenter coordinates due to the fluctuating E×B velocity do not explicitly appear in the Poisson equation and the [Sosenko, Phys. Scr. 64, 264 (2001)] result is recovered. It is demonstrated that there is no contradiction between the work presented by Sosenko and the work presented by [Wang, Phys. Plasmas 17, 082304 (2010)]. © 2010 American Institute of Physics.Disk dynamics and planet migration
EAS Publications Series 41 (2010) 209-218
Abstract:
We review models of protoplanetary disks. In the earlier stages of evolution, disks are subject to gravitational instabilities that redistribute mass and angular momentum on short timescales. Later on, when the mass of the disk is below ten percent or so of that of the central star, accretion occurs through the magnetorotational instability. The parts of the disks that are not ionized enough to couple to the magnetic field may not accrete or accrete inefficiently. We also review theories of planet migration. Tidal interaction between a disk and an embedded planet leads to angular momentum exchange between the planetary orbital motion and the disk rotation. This results in low mass planets migrating with respect to the gas in the disk, while massive planets open up a gap in the vicinity of their orbit and migrate in as the disk is accreted. © EAS, EDP Sciences, 2010.Distance determination for RAVE stars using stellar models
Astronomy and Astrophysics 511:1 (2010)
Abstract:
Aims: We develop a method for deriving distances from spectroscopic data and obtaining full 6D phase-space coordinates for the RAVE survey's second data release. Methods: We used stellar models combined with atmospheric properties from RAVE (effective temperature, surface gravity and metallicity) and (J - Ks) photometry from archival sources to derive absolute magnitudes. In combination with apparent magnitudes, sky coordinates, proper motions from a variety of sources and radial velocities from RAVE, we are able to derive the full 6D phasespace coordinates for a large sample of RAVE stars. This method is tested with artificial data, Hipparcos trigonometric parallaxes and observations of the open cluster M67. Results: When we applied our method to a set of 16 146 stars, we found that 25% (4037) of the stars have relative (statistical) distance errors of <35%, while 50% (8073) and 75% (12 110) have relative (statistical) errors smaller than 45% and 50%, respectively. Our various tests show that we can reliably estimate distances for main-sequence stars, but there is an indication of potential systematic problems with giant stars owing to uncertainties in the underlying stellar models. For the main-sequence star sample (defined as those with log(g) > 4), 25% (1744) have relative distance errors <31%, while 50% (3488) and 75% (5231) have relative errors smaller than 36% and 42%, respectively. Our full dataset shows the expected decrease in the metallicity of stars as a function of distance from the Galactic plane. The known kinematic substructures in the U and V velocity components of nearby dwarf stars are apparent in our dataset, confirming the accuracy of our data and the reliability of our technique. We provide independent measurements of the orientation of the UV velocity ellipsoid and of the solar motion, and they are in very good agreement with previous work. Conclusions: The distance catalogue for the RAVE second data release is available at http://www.astro.rug.nl/~rave, and will be updated in the future to include new data releases. © 2010 ESO.AstroGK: Astrophysical gyrokinetics code
Journal of Computational Physics Elsevier 229:24 (2010) 9347-9372