Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks
ArXiv 1102.3717 (2011)
Abstract:
Two symmetries of the local nonlinear delta-f gyrokinetic system of equations in tokamaks in the high flow regime are presented. The turbulent transport of toroidal angular momentum changes sign under an up-down reflection of the tokamak and a sign change of both the rotation and the rotation shear. Thus, the turbulent transport of toroidal angular momentum must vanish for up-down symmetric tokamaks in the absence of both rotation and rotation shear. This has important implications for the modeling of spontaneous rotation.Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks
(2011)
Galaxia: a code to generate a synthetic survey of the Milky Way
ArXiv 1101.3561 (2011)
Abstract:
We present here a fast code for creating a synthetic survey of the Milky Way. Given one or more color-magnitude bounds, a survey size and geometry, the code returns a catalog of stars in accordance with a given model of the Milky Way. The model can be specified by a set of density distributions or as an N-body realization. We provide fast and efficient algorithms for sampling both types of models. As compared to earlier sampling schemes which generate stars at specified locations along a line of sight, our scheme can generate a continuous and smooth distribution of stars over any given volume. The code is quite general and flexible and can accept input in the form of a star formation rate, age metallicity relation, age velocity dispersion relation and analytic density distribution functions. Theoretical isochrones are then used to generate a catalog of stars and support is available for a wide range of photometric bands. As a concrete example we implement the Besancon Milky Way model for the disc. For the stellar halo we employ the simulated stellar halo N-body models of Bullock & Johnston (2005). In order to sample N-body models, we present a scheme that disperses the stars spawned by an N-body particle, in such a way that the phase space density of the spawned stars is consistent with that of the N-body particles. The code is ideally suited to generating synthetic data sets that mimic near future wide area surveys such as GAIA, LSST and HERMES. As an application we study the prospect of identifying structures in the stellar halo with a simulated GAIA survey. We plan to make the code publicly available at http://galaxia.sourceforge.net.Models of our Galaxy II
ArXiv 1101.0747 (2011)
Abstract:
Stars near the Sun oscillate both horizontally and vertically. In Paper I the coupling between these motions was modelled by determining the horizontal motion without reference to the vertical motion, and recovering the coupling by assuming that the vertical action is adiabatically conserved as the star oscillates horizontally. Here we show that, although the assumption of adiabatic invariance works well, more accurate results can be obtained by taking the vertical action into account when calculating the horizontal motion. We use orbital tori to present a simple but fairly realistic model of the Galaxy's discs in which the motion of stars is handled rigorously, without decomposing it into horizontal and vertical components. We examine the ability of the adiabatic approximation to calculate the model's observables, and find that it performs perfectly in the plane, but errs slightly away from the plane. When the new correction to the adiabatic approximation is used, the density, streaming velocity and velocity dispersions are in error by less than 10 per cent for distances up to $2.5\kpc$ from the Sun. The torus-based model reveals that at locations above the plane the long axis of the velocity ellipsoid points almost to the Galactic centre, even though the model potential is significantly flattened. This result contradicts the widespread belief that the shape of the Galaxy's potential can be strongly constrained by the orientation of velocity ellipsoid near the Sun. An analysis of orbits reveals that in a general potential the orientation of the velocity ellipsoid depends on the structure of the model's distribution function as much as on its gravitational potential, contrary to what is the case for Staeckel potentials. We argue that the adiabatic approximation will provide a valuable complement to torus-based models in the interpretation of current surveys of the Galaxy.A search for new members of the βPictoris, Tucana-Horologium and εCha moving groups in the RAVE data base
Monthly Notices of the Royal Astronomical Society 411:1 (2011) 117-123