The mechanics of tidal streams

ArXiv 1011.3672 (2010)

Authors:

Andy Eyre, James Binney

Abstract:

We present an analysis of the mechanics of thin streams, which are formed following the tidal disruption of cold, low-mass clusters in the potential of a massive host galaxy. The analysis makes extensive use of action-angle variables, in which the physics of stream formation and evolution is expressed in a particularly simple form. We demonstrate the formation of streams by considering examples in both spherical and flattened potentials, and we find that the action-space structures formed in each take on a consistent and characteristic shape. We demonstrate that tidal streams formed in realistic galaxy potentials are poorly represented by single orbits, contrary to what is often assumed. We further demonstrate that attempting to constrain the parameters of the Galactic potential by fitting orbits to such streams can lead to significant systematic error. However, we show that it is possible to predict accurately the track of streams from simple models of the action-space distribution of the disrupted cluster.

HARMONI: A single-field wide-band integral-field spectrograph for the European ELT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, RL Davies, A Remillieux, R Bacon, D Lunney, S Arribas, E Mediavilla, F Gago, N Bezawada, P Ferruit, A Fragoso, D Freeman, J Fuentes, T Fusco, A Gallie, A Garcia, T Goodsall, F Gracia, A Jarno, J Kosmalski, J Lynn, S McLay, D Montgomery, A Pecontal, H Schnetler, H Smith, D Sosa, G Battaglia, N Bowles, L Colina, E Emsellem, A Garcia-Perez, S Gladysz, I Hook, P Irwin, M Jarvis, R Kennicutt, A Levan, A Longmore, J Magorrian, M McCaughrean, L Origlia, R Rebolo, D Rigopoulou, S Ryan, M Swinbank, N Tanvir, E Tolstoy, A Verma

Abstract:

We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT's core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceedings[1]. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Distance determination for RAVE stars using stellar models: II. Most likely values assuming a standard stellar evolution scenario

Astronomy and Astrophysics 522:4 (2010)

Authors:

T Zwitter, G Matijevič, MA Breddels, MC Smith, A Helmi, U Munari, O Bienaymé, J Binney, J Bland-Hawthorn, C Boeche, AGA Brown, R Campbell, KC Freeman, J Fulbright, B Gibson, G Gilmore, EK Grebel, JF Navarro, QA Parker, GM Seabroke, A Siebert, A Siviero, M Steinmetz, FG Watson, M Williams, RFG Wyse

Abstract:

The RAdial Velocity Experiment (RAVE) is a spectroscopic survey of the Milky Way which already collected over 400000 spectra of ∼330000 different stars. We use the subsample of spectra with spectroscopically determined values of stellar parameters to determine the distances to these stars. The list currently contains 235  064 high quality spectra which show no peculiarities and belong to 21872 different stars. The numbers will grow as the RAVE survey progresses. The public version of the catalog will be made available through the CDS services along with the ongoing RAVE public data releases. The distances are determined with a method based on the work by Breddels et al. (2010, A&A, 511, A16). Here we assume that the star undergoes a standard stellar evolution and that its spectrum shows no peculiarities. The refinements include: the use of either of the three isochrone sets, a better account of the stellar ages and masses, use of more realistic errors of stellar parameter values, and application to a larger dataset. The derived distances of both dwarfs and giants match within ∼ 21% to the astrometric distances of Hipparcos stars and to the distances of observed members of open and globular clusters. Multiple observations of a fraction of RAVE stars show that repeatability of the derived distances is even better, with half of the objects showing a distance scatter of ≲ 11%. RAVE dwarfs are ∼ 300 pc from the Sun, and giants are at distances of 1 to 2 kpc, and up to 10 kpc. This places the RAVE dataset between the more local Geneva-Copenhagen survey and the more distant and fainter SDSS sample. As such it is ideal to address some of the fundamental questions of Galactic structure and evolution in the pre-Gaia era. Individual applications are left to separate papers, here we show that the full 6-dimensional information on position and velocity is accurate enough to discuss the vertical structure and kinematic properties of the thin and thick disks. © 2010 ESO.

The Physics of Quantum Mechanics

Cappella Archive / Oxford University Press, 2010

Authors:

J Binney, D Skinner

Transport bifurcation in a rotating tokamak plasma.

Physical review letters 105:21 (2010) 215003

Authors:

EG Highcock, M Barnes, AA Schekochihin, FI Parra, CM Roach, SC Cowley

Abstract:

The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.